This file is indexed.

/usr/share/acl2-7.2dfsg/books/data-structures/set-defthms.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
; set-defthms.lisp -- theorems about functions in the theory of sets
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Written by:  Bill Bevier (bevier@cli.com)
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

(in-package "ACL2")
(include-book "set-defuns")


; ------------------------------------------------------------
; SUBSETP-EQUAL
; ------------------------------------------------------------

(defthm subsetp-equal-cons
  (implies (subsetp-equal a b)
	   (subsetp-equal a (cons x b))))

(defthm subsetp-equal-reflexive
  (subsetp-equal l l))

(defthm subsetp-equal-transitive
  (implies (and (subsetp-equal a b)
		(subsetp-equal b c))
	   (subsetp-equal a c))
  :rule-classes nil)

(defthm subsetp-equal-append-crock
  (implies (subsetp-equal l1 l2)
	   (subsetp-equal (append l1 (list x)) (cons x l2))))

(defthm subsetp-equal-append2
  (implies (subsetp-equal l1 l2)
	   (subsetp-equal l1 (append l2 l3))))

(defthm subsetp-equal-adjoin-equal1
  (equal (subsetp-equal (adjoin-equal x a) b)
	 (and (memberp-equal x b)
	      (subsetp-equal a b))))

(defthm subsetp-equal-adjoin-equal2
  (implies (subsetp-equal a b)
	   (subsetp-equal a (adjoin-equal x b))))

(defthm subsetp-equal-intersection-equal
  (implies (and (subsetp-equal a b)
	      (subsetp-equal a c))
	 (subsetp-equal a (intersection-equal b c))))

(defthm subsetp-equal-set-difference-equal
  (implies (and (subsetp-equal a b)
		(equal (intersection-equal a c) nil))
	   (subsetp-equal a (set-difference-equal b c))))

(defthm subsetp-equal-union-equal
  (implies (or (subsetp-equal a b)
	       (subsetp-equal a c))
	   (subsetp-equal a (union-equal b c))))

; ------------------------------------------------------------
; SET-EQUAL is an equivalence relation.
; ------------------------------------------------------------

(defthm set-equal-reflexive
  (set-equal l l)
  :hints (("Goal" :do-not-induct t)))

(defthm set-equal-symmetric
  (implies (set-equal a b)
	   (set-equal b a))
  :rule-classes nil)

(defthm set-equal-transitive
  (implies (and (set-equal a b)
		(set-equal b c))
	   (set-equal a c))
  :rule-classes nil
  :hints (("Goal" :do-not-induct t
	   :use ((:instance subsetp-equal-transitive (a a) (b b) (c c))
		 (:instance subsetp-equal-transitive (a c) (b b) (c a))))))

; ------------------------------------------------------------
; MEMBERP-EQUAL
; ------------------------------------------------------------

(defthm memberp-equal-subsetp-equal
  (implies (and (memberp-equal x a)
		(subsetp-equal a b))
	   (memberp-equal x b))
  :rule-classes ())

(defthm memberp-equal-set-equal
  (implies (set-equal a b)
	   (iff (memberp-equal x a)
		(memberp-equal x b)))
  :rule-classes ()
  :hints (("Goal" :do-not-induct t
	   :use ((:instance memberp-equal-subsetp-equal (x x) (a a) (b b))
		 (:instance memberp-equal-subsetp-equal (x x) (a b) (b a))))))

(defthm memberp-equal-adjoin-equal
  (iff (memberp-equal x (adjoin-equal y l))
       (or (equal x y)
	   (memberp-equal x l))))

(defthm memberp-equal-intersection-equal
  (iff (memberp-equal x (intersection-equal a b))
       (and (memberp-equal x a)
	    (memberp-equal x b))))

(defthm memberp-equal-set-difference-equal
  (iff (memberp-equal x (set-difference-equal a b))
       (and (memberp-equal x a)
	    (not (memberp-equal x b)))))

(defthm memberp-equal-union-equal
  (iff (memberp-equal x (union-equal a b))
       (or (memberp-equal x a)
	   (memberp-equal x b))))

; ------------------------------------------------------------
; SETP
; ------------------------------------------------------------

(defthm setp-equal-cons
  (equal (setp-equal (cons x l))
	 (and (setp-equal l)
	      (not (memberp-equal x l))))
  :hints (("Goal" :in-theory (enable setp-equal))))

(defthm setp-equal-adjoin-equal
  (implies (setp-equal a)
	   (setp-equal (adjoin-equal x a))))

(local
 (defthm member-equal-intersection-equal
   (iff (member-equal x (intersection-equal a b))
	(and (member-equal x a)
	     (member-equal x b)))))

(defthm setp-equal-intersection-equal
  (implies (setp-equal a)
	   (setp-equal (intersection-equal a b))))

(local
 (defthm member-equal-set-difference-equal
  (iff (member-equal x (set-difference-equal a b))
       (and (member-equal x a)
	    (not (member-equal x b))))))

(defthm setp-equal-set-difference-equal
  (implies (setp-equal a)
	   (setp-equal (set-difference-equal a b))))

(local
 (defthm member-equal-union-equal
   (iff (member-equal x (union-equal a b))
	(or (member-equal x a)
	    (member-equal x b)))))

(defthm setp-equal-union-equal
  (implies (and (setp-equal a) (setp-equal b))
	   (setp-equal (union-equal a b))))

; ------------------------------------------------------------
; INTERSECTION-EQUAL
; ------------------------------------------------------------

(defthm intersection-equal-nil
  (equal (intersection-equal a nil) nil))

(defthm subsetp-equal-intersection-equal-instance
  (implies (and (true-listp a)
		(subsetp-equal a b))
	   (equal (intersection-equal a b) a)))

(defthm intersection-equal-identity
  (implies (true-listp a)
	   (equal (intersection-equal a a) a))
  :hints (("Goal" :do-not-induct t)))

; ------------------------------------------------------------
; UNION-EQUAL
; ------------------------------------------------------------

(defthm union-equal-nil
  (implies (true-listp a)
	   (equal (union-equal a nil) a)))

(defthm subsetp-equal-union-equal-instance
  (implies (and (true-listp b)
		(subsetp-equal a b))
	   (equal (union-equal a b) b)))

(defthm union-equal-identity
  (implies (true-listp a)
	   (equal (union-equal a a) a))
  :hints (("Goal" :do-not-induct t)))

; ------------------------------------------------------------
; SET-DIFFERENCE-EQUAL
; ------------------------------------------------------------

(defthm set-difference-equal-nil
  (implies (true-listp a)
	   (equal (set-difference-equal a nil) a)))

(defthm subsetp-equal-set-difference-equal-instance
  (implies (and (true-listp b)
		(subsetp-equal a b))
	   (equal (set-difference-equal a b) nil)))

(defthm set-difference-equal-identity
  (implies (true-listp a)
	   (equal (set-difference-equal a a) nil))
  :hints (("Goal" :do-not-induct t)))

(defthm set-difference-equal-cons
  (implies (member-equal x b)
	   (equal (set-difference-equal a (cons x b))
		  (set-difference-equal a b))))

(defthm set-difference-null-intersection
  (implies (and (true-listp a)
		(equal (intersection-equal a b) nil))
	   (equal (set-difference-equal a b) a)))


; ------------------------------------------------------------
; Other Facts
; ------------------------------------------------------------

(local
 (defthm member-equal-append
   (iff (member-equal x (append a b))
	(or (member-equal x a)
	    (member-equal x b)))))

(defthm no-duplicatesp-equal-append
  (iff (no-duplicatesp-equal (append a b))
       (and (no-duplicatesp-equal a)
	    (no-duplicatesp-equal b)
	    (not (intersection-equal a b)))))

(local
 (defthm true-listp-append-rewrite
  (equal (true-listp (append a b))
	 (true-listp b))))

(defthm setp-equal-append
  (implies (true-listp a)
	   (iff (setp-equal (append a b))
		(and (setp-equal a)
		     (setp-equal b)
		     (not (intersection-equal a b)))))
  :hints (("Goal" :do-not-induct t)))


(in-theory (disable set-equal setp-equal adjoin-equal memberp-equal))