This file is indexed.

/usr/share/acl2-7.2dfsg/books/cowles/acl2-crg.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
; Written by John Cowles
; Copyright/License: See the LICENSE file in this directory.

#| This is the .lisp file for the Commutative Ring book.

   John Cowles, University of Wyoming, Summer 1993

   Modified A. Flatau  2-Nov-1994
     Added a :verify-guards t hint to PRED for Acl2 1.8.

   Modified by Jared Davis, January 2004, to convert comments to XDOC.
|#

(in-package "ACL2-CRG")
(include-book "acl2-agp")

(defsection commutative-rings
  :parents (cowles)
  :short "Axiomatization of two associative and commutative operations, one
distributes over the other, while the other has an identity and an unary
inverse operation."

  :long "<h3>Theory of Commutative Rings</h3>

<p>@('ACL2-CRG::plus') and @('ACL2-CRG::times') are associative and commutative
binary operations on the set (of equivalence classes formed by the equivalence
relation, @('ACL2-CRG::equiv'), on the set)</p>

@({
      RG = { x | (ACL2-CRG::pred x) != nil }
})

<p>with @('ACL2-CRG::times') distributing over @('ACL2-CRG::plus').</p>

<p>@('ACL2-CRG::zero') is a constant in the set RG which acts as an unit for
@('ACL2-CRG::plus').</p>

<p>@('ACL2-CRG::minus') is an unary operation on the set (of equivalence
classes formed by the equivalence relation, @('ACL2-CRG::equiv'), on the set)
RG which acts as an @('ACL2-CRG::plus-inverse') for @('ACL2-CRG::zero').</p>

<p>For example, let</p>
<ul>
<li> @('ACL2-CRG::pred')  = Booleanp, </li>
<li> @('ACL2-CRG::plus')  = exclusive-or, </li>
<li> @('ACL2-CRG::times') = and, </li>
<li> @('ACL2-CRG::zero')  = nil, and </li>
<li> @('ACL2-CRG::minus') = identity function. </li>
</ul>

<h3>Axioms of the theory of Commutative Rings</h3>

<p>Using @(see encapsulate), we introduce constrained functions:</p>

<ul>
<li>@(call equiv)</li>
<li>@(call pred)</li>
<li>@(call plus)</li>
<li>@(call times)</li>
<li>@(call zero)</li>
<li>@(call minus)</li>
</ul>

<p>with the following, constraining axioms:</p>

@(def Equiv-is-an-equivalence)
@(def Equiv-1-implies-equiv-plus)
@(def Equiv-2-implies-equiv-plus)
@(def Equiv-2-implies-equiv-times)
@(def Equiv-1-implies-equiv-minus)

@(def Closure-of-plus-for-pred)
@(def Closure-of-times-for-pred)
@(def Closure-of-zero-for-pred)
@(def Closure-of-minus-for-pred)

@(def Commutativity-of-plus)
@(def Commutativity-of-times)

@(def Associativity-of-plus)
@(def Associativity-of-times)

@(def Left-distributivity-of-times-over-plus)

@(def Left-unicity-of-zero-for-plus)
@(def Right-inverse-for-plus)


<h3>Theorems of the theory of Commutative Rings</h3>

<p>Given the above constraints, we prove the following generic theorems.</p>

<p>Besides the theorems below, note that @('<RG, ACL2-CRG::plus>') and @('<RG,
ACL2-CRG::times>') are both semigroups, and @('<RG, ACL2-CRG::plus,
ACL2-CRG::minus, ACL2-CRG::zero>') is an Abelian Group. Thus, additional
theorems of the theory of Commutative Rings may be obtained as instances of the
theorems of the theories of @(see acl2-asg::abelian-semigroups) and @(see
acl2-agp::abelian-groups).</p>"
  ;; It looks like this doc ends abruptly, but see below; we extend it.
  :autodoc nil

  (encapsulate
    ((equiv (x y) t)
     (pred (x) t)
     (plus (x y) t)
     (times (x y) t)
     (zero () t)
     (minus (x) t))

    (local (defun equiv (x y)
       (equal x y)))

    (local (defun pred (x)
             (declare (xargs :verify-guards t))
             (or (equal x t)
                 (equal x nil))))

    (local (defun plus (x y)
             (declare (xargs :guard (and (pred x)
                                         (pred y))))
             (and (or x y)
                  (not (and x y)))))

    (local (defun times (x y)
             (declare (xargs :guard (and (pred x)
                                         (pred y))))
             (and x y)))

    (local (defun zero () nil))

    (local (defun minus (x)
             (declare (xargs :guard (pred x)))
             x))

    (defthm Equiv-is-an-equivalence
      (and (booleanp (equiv x y))
           (equiv x x)
           (implies (equiv x y)
                    (equiv y x))
           (implies (and (equiv x y)
                         (equiv y z))
                    (equiv x z)))
      :rule-classes (:equivalence
                     (:type-prescription
                      :corollary
                      (or (equal (equiv x y) t)
                          (equal (equiv x y) nil)))))

    (defthm Equiv-1-implies-equiv-plus
      (implies (equiv x1 x2)
               (equiv (plus x1 y)
                      (plus x2 y)))
      :rule-classes :congruence)

    (defthm Equiv-2-implies-equiv-plus
      (implies (equiv y1 y2)
               (equiv (plus x y1)
                      (plus x y2)))
      :rule-classes :congruence)

    (defthm Equiv-2-implies-equiv-times
      (implies (equiv y1 y2)
               (equiv (times x y1)
                      (times x y2)))
      :rule-classes :congruence)

    (defthm Equiv-1-implies-equiv-minus
      (implies (equiv x1 x2)
               (equiv (minus x1)
                      (minus x2)))
      :rule-classes :congruence)

    (defthm Closure-of-plus-for-pred
      (implies (and (pred x)
                    (pred y))
               (pred (plus x y))))

    (defthm Closure-of-times-for-pred
      (implies (and (pred x)
                    (pred y))
               (pred (times x y))))

    (defthm Closure-of-zero-for-pred
      (pred (zero)))

    (defthm Closure-of-minus-for-pred
      (implies (pred x)
               (pred (minus x))))

    (defthm Commutativity-of-plus
      (implies (and (pred x)
                    (pred y))
               (equiv (plus x y)
                      (plus y x))))

    (defthm Commutativity-of-times
      (implies (and (pred x)
                    (pred y))
               (equiv (times x y)
                      (times y x))))

    (defthm Associativity-of-plus
      (implies (and (pred x)
                    (pred y)
                    (pred z))
               (equiv (plus (plus x y) z)
                      (plus x (plus y z)))))

    (defthm Associativity-of-times
      (implies (and (pred x)
                    (pred y)
                    (pred z))
               (equiv (times (times x y) z)
                      (times x (times y z)))))

    (defthm Left-distributivity-of-times-over-plus
      (implies (and (pred x)
                    (pred y)
                    (pred z))
               (equiv (times  x (plus y z))
                      (plus (times x y)
                            (times x z)))))

    (defthm Left-unicity-of-zero-for-plus
      (implies (pred x)
               (equiv (plus (zero) x)
                      x)))

    (defthm Right-inverse-for-plus
      (implies (pred x)
               (equiv (plus x (minus x))
                      (zero))))))

(defsection commutative-rings-thms
  :extension commutative-rings

  (defthm Right-distributivity-of-times-over-plus
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (equiv (times (plus x y) z)
                    (plus (times x z)
                          (times y z)))))

  (defthm Left-nullity-of-zero-for-times
    (implies (pred x)
             (equiv (times (zero) x)
                    (zero)))
    :hints (("Goal"
             :use ((:instance
                    (:functional-instance
                     acl2-agp::Uniqueness-of-id-as-op-idempotent
                     (acl2-agp::equiv equiv)
                     (acl2-agp::pred pred)
                     (acl2-agp::op plus)
                     (acl2-agp::id zero)
                     (acl2-agp::inv minus))
                    (acl2-agp::x (times (zero) x)))
                   (:instance Left-distributivity-of-times-over-plus
                              (y (zero))
                              (z (zero)))))))

  (defthm Right-nullity-of-zero-for-times
    (implies (pred x)
             (equiv (times x (zero))
                    (zero))))

  (defthm Functional-commutativity-of-minus-times-right
    (implies (and (pred x)
                  (pred y))
             (equiv (times x (minus y))
                    (minus (times x y))))
    :hints (("Goal"
             :use ((:instance
                    (:functional-instance
                     acl2-agp::Uniqueness-of-op-inverses
                     (acl2-agp::equiv equiv)
                     (acl2-agp::pred pred)
                     (acl2-agp::op plus)
                     (acl2-agp::id zero)
                     (acl2-agp::inv minus))
                    (acl2-agp::x (times x y))
                    (acl2-agp::y (times x (minus y))))
                   (:instance
                    Left-distributivity-of-times-over-plus
                    (z (minus y)))))))

  (defthm Functional-commutativity-of-minus-times-left
    (implies (and (pred x)
                  (pred y))
             (equiv (times (minus x) y)
                    (minus (times x y))))))