/usr/share/acl2-7.2dfsg/books/cowles/acl2-crg.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | ; Written by John Cowles
; Copyright/License: See the LICENSE file in this directory.
#| This is the .lisp file for the Commutative Ring book.
John Cowles, University of Wyoming, Summer 1993
Modified A. Flatau 2-Nov-1994
Added a :verify-guards t hint to PRED for Acl2 1.8.
Modified by Jared Davis, January 2004, to convert comments to XDOC.
|#
(in-package "ACL2-CRG")
(include-book "acl2-agp")
(defsection commutative-rings
:parents (cowles)
:short "Axiomatization of two associative and commutative operations, one
distributes over the other, while the other has an identity and an unary
inverse operation."
:long "<h3>Theory of Commutative Rings</h3>
<p>@('ACL2-CRG::plus') and @('ACL2-CRG::times') are associative and commutative
binary operations on the set (of equivalence classes formed by the equivalence
relation, @('ACL2-CRG::equiv'), on the set)</p>
@({
RG = { x | (ACL2-CRG::pred x) != nil }
})
<p>with @('ACL2-CRG::times') distributing over @('ACL2-CRG::plus').</p>
<p>@('ACL2-CRG::zero') is a constant in the set RG which acts as an unit for
@('ACL2-CRG::plus').</p>
<p>@('ACL2-CRG::minus') is an unary operation on the set (of equivalence
classes formed by the equivalence relation, @('ACL2-CRG::equiv'), on the set)
RG which acts as an @('ACL2-CRG::plus-inverse') for @('ACL2-CRG::zero').</p>
<p>For example, let</p>
<ul>
<li> @('ACL2-CRG::pred') = Booleanp, </li>
<li> @('ACL2-CRG::plus') = exclusive-or, </li>
<li> @('ACL2-CRG::times') = and, </li>
<li> @('ACL2-CRG::zero') = nil, and </li>
<li> @('ACL2-CRG::minus') = identity function. </li>
</ul>
<h3>Axioms of the theory of Commutative Rings</h3>
<p>Using @(see encapsulate), we introduce constrained functions:</p>
<ul>
<li>@(call equiv)</li>
<li>@(call pred)</li>
<li>@(call plus)</li>
<li>@(call times)</li>
<li>@(call zero)</li>
<li>@(call minus)</li>
</ul>
<p>with the following, constraining axioms:</p>
@(def Equiv-is-an-equivalence)
@(def Equiv-1-implies-equiv-plus)
@(def Equiv-2-implies-equiv-plus)
@(def Equiv-2-implies-equiv-times)
@(def Equiv-1-implies-equiv-minus)
@(def Closure-of-plus-for-pred)
@(def Closure-of-times-for-pred)
@(def Closure-of-zero-for-pred)
@(def Closure-of-minus-for-pred)
@(def Commutativity-of-plus)
@(def Commutativity-of-times)
@(def Associativity-of-plus)
@(def Associativity-of-times)
@(def Left-distributivity-of-times-over-plus)
@(def Left-unicity-of-zero-for-plus)
@(def Right-inverse-for-plus)
<h3>Theorems of the theory of Commutative Rings</h3>
<p>Given the above constraints, we prove the following generic theorems.</p>
<p>Besides the theorems below, note that @('<RG, ACL2-CRG::plus>') and @('<RG,
ACL2-CRG::times>') are both semigroups, and @('<RG, ACL2-CRG::plus,
ACL2-CRG::minus, ACL2-CRG::zero>') is an Abelian Group. Thus, additional
theorems of the theory of Commutative Rings may be obtained as instances of the
theorems of the theories of @(see acl2-asg::abelian-semigroups) and @(see
acl2-agp::abelian-groups).</p>"
;; It looks like this doc ends abruptly, but see below; we extend it.
:autodoc nil
(encapsulate
((equiv (x y) t)
(pred (x) t)
(plus (x y) t)
(times (x y) t)
(zero () t)
(minus (x) t))
(local (defun equiv (x y)
(equal x y)))
(local (defun pred (x)
(declare (xargs :verify-guards t))
(or (equal x t)
(equal x nil))))
(local (defun plus (x y)
(declare (xargs :guard (and (pred x)
(pred y))))
(and (or x y)
(not (and x y)))))
(local (defun times (x y)
(declare (xargs :guard (and (pred x)
(pred y))))
(and x y)))
(local (defun zero () nil))
(local (defun minus (x)
(declare (xargs :guard (pred x)))
x))
(defthm Equiv-is-an-equivalence
(and (booleanp (equiv x y))
(equiv x x)
(implies (equiv x y)
(equiv y x))
(implies (and (equiv x y)
(equiv y z))
(equiv x z)))
:rule-classes (:equivalence
(:type-prescription
:corollary
(or (equal (equiv x y) t)
(equal (equiv x y) nil)))))
(defthm Equiv-1-implies-equiv-plus
(implies (equiv x1 x2)
(equiv (plus x1 y)
(plus x2 y)))
:rule-classes :congruence)
(defthm Equiv-2-implies-equiv-plus
(implies (equiv y1 y2)
(equiv (plus x y1)
(plus x y2)))
:rule-classes :congruence)
(defthm Equiv-2-implies-equiv-times
(implies (equiv y1 y2)
(equiv (times x y1)
(times x y2)))
:rule-classes :congruence)
(defthm Equiv-1-implies-equiv-minus
(implies (equiv x1 x2)
(equiv (minus x1)
(minus x2)))
:rule-classes :congruence)
(defthm Closure-of-plus-for-pred
(implies (and (pred x)
(pred y))
(pred (plus x y))))
(defthm Closure-of-times-for-pred
(implies (and (pred x)
(pred y))
(pred (times x y))))
(defthm Closure-of-zero-for-pred
(pred (zero)))
(defthm Closure-of-minus-for-pred
(implies (pred x)
(pred (minus x))))
(defthm Commutativity-of-plus
(implies (and (pred x)
(pred y))
(equiv (plus x y)
(plus y x))))
(defthm Commutativity-of-times
(implies (and (pred x)
(pred y))
(equiv (times x y)
(times y x))))
(defthm Associativity-of-plus
(implies (and (pred x)
(pred y)
(pred z))
(equiv (plus (plus x y) z)
(plus x (plus y z)))))
(defthm Associativity-of-times
(implies (and (pred x)
(pred y)
(pred z))
(equiv (times (times x y) z)
(times x (times y z)))))
(defthm Left-distributivity-of-times-over-plus
(implies (and (pred x)
(pred y)
(pred z))
(equiv (times x (plus y z))
(plus (times x y)
(times x z)))))
(defthm Left-unicity-of-zero-for-plus
(implies (pred x)
(equiv (plus (zero) x)
x)))
(defthm Right-inverse-for-plus
(implies (pred x)
(equiv (plus x (minus x))
(zero))))))
(defsection commutative-rings-thms
:extension commutative-rings
(defthm Right-distributivity-of-times-over-plus
(implies (and (pred x)
(pred y)
(pred z))
(equiv (times (plus x y) z)
(plus (times x z)
(times y z)))))
(defthm Left-nullity-of-zero-for-times
(implies (pred x)
(equiv (times (zero) x)
(zero)))
:hints (("Goal"
:use ((:instance
(:functional-instance
acl2-agp::Uniqueness-of-id-as-op-idempotent
(acl2-agp::equiv equiv)
(acl2-agp::pred pred)
(acl2-agp::op plus)
(acl2-agp::id zero)
(acl2-agp::inv minus))
(acl2-agp::x (times (zero) x)))
(:instance Left-distributivity-of-times-over-plus
(y (zero))
(z (zero)))))))
(defthm Right-nullity-of-zero-for-times
(implies (pred x)
(equiv (times x (zero))
(zero))))
(defthm Functional-commutativity-of-minus-times-right
(implies (and (pred x)
(pred y))
(equiv (times x (minus y))
(minus (times x y))))
:hints (("Goal"
:use ((:instance
(:functional-instance
acl2-agp::Uniqueness-of-op-inverses
(acl2-agp::equiv equiv)
(acl2-agp::pred pred)
(acl2-agp::op plus)
(acl2-agp::id zero)
(acl2-agp::inv minus))
(acl2-agp::x (times x y))
(acl2-agp::y (times x (minus y))))
(:instance
Left-distributivity-of-times-over-plus
(z (minus y)))))))
(defthm Functional-commutativity-of-minus-times-left
(implies (and (pred x)
(pred y))
(equiv (times (minus x) y)
(minus (times x y))))))
|