This file is indexed.

/usr/share/acl2-7.2dfsg/books/cowles/acl2-agp.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
; Written by John Cowles
; Copyright/License: See the LICENSE file in this directory.

#| This is the .lisp file for the Abelian Group book.

   John Cowles, University of Wyoming, Summer 1993
     Last modified 29 July 1994.

   Modified A. Flatau  2-Nov-1994
     Added a :verify-guards t hint to PRED for Acl2 1.8.

   Modified by Jared Davis, January 2014, to convert comments to XDOC
|#

(in-package "ACL2-AGP")
(include-book "acl2-asg")

(defsection abelian-groups
  :parents (cowles)
  :short "Axiomatization of an associative and commutative binary operation
with an identity and an unary inverse operation."

  :long "<h3>Theory of Abelian Groups</h3>

<p>@('ACL2-AGP::op') is an associative and commutative binary operation on the
set (of equivalence classes formed by the equivalence relation,
@('ACL2-AGP::equiv'), on the set)</p>

@({
     GP = { x | (ACL2-AGP::pred x) != nil }
})

<p>@('ACL2-AGP::id') is a constant in the set GP which acts as an unit for
@('ACL2-AGP::op') in GP.</p>

<p>@('ACL2-AGP::inv') is an unary operation on the set (of equivalence classes
formed by the equivalence relation, @('ACL2-AGP::equiv'), on the set) GP which
acts as an @('ACL2-AGP::op-inverse') for @('ACL2-AGP:: id').</p>

<p>For example, let</p>

<ul>
<li>@('ACL2-AGP::pred') = Booleanp, </li>
<li>@('ACL2-AGP::op')   = exclusive-or, </li>
<li>@('ACL2-AGP::id')   = nil, and </li>
<li>@('ACL2-AGP::inv')  = identity function. </li>
</ul>

<h3>Axioms of the theory of Abelian Groups</h3>

<p>Using @(see encapsulate), we introduce constrained functions:</p>

<ul>
<li>@(call equiv)</li>
<li>@(call pred)</li>
<li>@(call op)</li>
<li>@(call id)</li>
<li>@(call inv)</li>
</ul>

<p>with the following, constraining axioms:</p>

@(def Equiv-is-an-equivalence)
@(def Equiv-1-implies-equiv-op)
@(def Equiv-2-implies-equiv-op)
@(def Closure-of-op-for-pred)
@(def Closure-of-id-for-pred)
@(def Closure-of-inv-for-pred)
@(def Commutativity-of-op)
@(def Associativity-of-op)
@(def Left-unicity-of-id-for-op)
@(def Right-inverse-of-inv-for-op)

<h3>Theorems of the theory of Abelian Groups</h3>"
  ;; It looks like this doc ends abruptly, but see below; we extend it.
  :autodoc nil

  (encapsulate
    ((equiv (x y) t)
     (pred (x) t)
     (op (x y) t)
     (id () t)
     (inv (x) t))

    (local (defun equiv (x y)
             (equal x y)))

    (local (defun pred (x)
             (declare (xargs :verify-guards t))
             (or (equal x t)
                 (equal x nil))))

    (local (defun op (x y)
             (declare (xargs :guard (and (pred x)
                                         (pred y))))
             (and (or x y)
                  (not (and x y)))))

    (local (defun id ()
             nil))

    (local (defun inv (x)
             (declare (xargs :guard (pred x)))
             x))

    (defthm Equiv-is-an-equivalence
      (and (booleanp (equiv x y))
           (equiv x x)
           (implies (equiv x y)
                    (equiv y x))
           (implies (and (equiv x y)
                         (equiv y z))
                    (equiv x z)))
      :rule-classes (:equivalence
                     (:type-prescription
                      :corollary
                      (or (equal (equiv x y) t)
                          (equal (equiv x y) nil)))))

    (defthm Equiv-1-implies-equiv-op
      (implies (equiv x1 x2)
               (equiv (op x1 y)
                      (op x2 y)))
      :rule-classes :congruence)

    (defthm Equiv-2-implies-equiv-op
      (implies (equiv y1 y2)
               (equiv (op x y1)
                      (op x y2)))
      :rule-classes :congruence)

    (defthm Closure-of-op-for-pred
      (implies (and (pred x)
                    (pred y))
               (pred (op x y))))

    (defthm Closure-of-id-for-pred
      (pred (id)))

    (defthm Closure-of-inv-for-pred
      (implies (pred x)
               (pred (inv x))))

    (defthm Commutativity-of-op
      (implies (and (pred x)
                    (pred y))
               (equiv (op x y)
                      (op y x))))

    (defthm Associativity-of-op
      (implies (and (pred x)
                    (pred y)
                    (pred z))
               (equiv (op (op x y) z)
                      (op x (op y z)))))

    (defthm Left-unicity-of-id-for-op
      (implies (pred x)
               (equiv (op (id) x)
                      x)))

    (defthm Right-inverse-of-inv-for-op
      (implies (pred x)
               (equiv (op x (inv x))
                      (id))))))


(defsection abelian-groups-thms
  :extension abelian-groups

  (acl2-asg::add-commutativity-2 equiv
                                 pred
                                 op
                                 commutativity-of-op
                                 commutativity-2-of-op)

  (defthm Right-unicity-of-id-for-op
    (implies (pred x)
             (equiv (op x (id))
                    x)))

  (defthm Left-inverse-of-inv-for-op
    (implies (pred x)
             (equiv (op (inv x) x)
                    (id))))

  (local (defthm Right-cancellation-for-op-iff
           (implies (and (pred x)
                         (pred y)
                         (pred z))
                    (iff (equiv (op x z) (op y z))
                         (equiv x y)))
           :rule-classes nil
           :hints (("Subgoal 1"
                    :in-theory (disable Equiv-1-implies-equiv-op)
                    :use (:instance Equiv-1-implies-equiv-op
                                    (x1 (op x z))
                                    (x2 (op y z))
                                    (y  (inv z)))))))

  (defthm Right-cancellation-for-op
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (equal (equiv (op x z) (op y z))
                    (equiv x y)))
    :rule-classes nil
    :hints (("Goal" :use Right-cancellation-for-op-iff)))

  (local (defthm Left-cancellation-for-op-iff
           (implies (and (pred x)
                         (pred y)
                         (pred z))
                    (iff (equiv (op x y) (op x z))
                         (equiv z y)))
           :rule-classes nil
           :hints (("Goal" :use ((:instance Right-cancellation-for-op
                                            (x z)
                                            (z x)))))))

  (defthm Left-cancellation-for-op
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (equal (equiv (op x y) (op x z))
                    (equiv y z)))
    :hints (("Goal" :use Left-cancellation-for-op-iff)))

  (defthm Uniqueness-of-id-as-op-idempotent
    (implies (and (pred x)
                  (equiv (op x x) x))
             (equiv x (id)))
    :rule-classes nil
    :hints (("Goal"
             :use (:instance Right-cancellation-for-op
                             (y (id))
                             (z x)))))

  (defthm Uniqueness-of-op-inverses
    (implies (and (pred x)
                  (pred y)
                  (equiv (op x y) (id)))
             (equiv y (inv x)))
    :rule-classes nil
    :hints (("Goal"
             :use (:instance Right-cancellation-for-op
                             (x y)
                             (y (inv x))
                             (z x)))))

  (defthm Involution-of-inv
    (implies (pred x)
             (equiv (inv (inv x))
                    x))
    :hints (("Goal" :use (:instance Uniqueness-of-op-inverses
                                    (x (inv x))
                                    (y x)))))

  (defthm Uniqueness-of-op-inverses-1
    (implies (and (pred x)
                  (pred y)
                  (equiv (op x (inv y)) (id)))
             (equiv x y))
    :rule-classes nil
  :hints (("Goal" :use (:instance Uniqueness-of-op-inverses
                                  (y x)
                                  (x (inv y))))))

  (defthm Distributivity-of-inv-over-op
    (implies (and (pred x)
                  (pred y))
             (equiv (inv (op x y))
                    (op (inv x)
                        (inv y))))
    :hints (("Goal" :use (:instance Uniqueness-of-op-inverses
                                    (x (op x y))
                                    (y (op (inv x)(inv y)))))))

  (defthm id-is-its-own-invese
    (equiv (inv (id))
           (id))
    :hints (("Goal" :use (:instance Uniqueness-of-op-inverses
                                    (x (id))
                                    (y (id))))))

  (local (defthm obvious-inv-cancellation
           (implies (and (pred x)
                         (pred y))
                    (equiv (op (op x (inv x)) y) y))
           :rule-classes nil))

  (defthm inv-cancellation-on-right
    (implies (and (pred x)
                  (pred y))
             (equiv (op x (op y (inv x)))
                    y))
    :hints (("Goal"
             :use obvious-inv-cancellation
             :in-theory (disable right-inverse-of-inv-for-op))))

  (defthm inv-cancellation-on-left
    (implies (and (pred x)
                  (pred y))
             (equiv (op x (op (inv x) y))
                    y))))