/usr/share/acl2-7.2dfsg/books/bdd/bdd-primitives.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | ; ACL2 books using the bdd hints
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Written by: Matt Kaufmann
; email: Matt_Kaufmann@aus.edsr.eds.com
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
(in-package "ACL2")
(set-verify-guards-eagerness 2)
(encapsulate
()
; This macro is really just implies, as shown by the local theorem below, but
; it is handy for bdd processing when we want to avoid building bdds for the
; hypotheses of an implies, but rather only want to use those hypotheses in
; order to guarantee that certain variables are Boolean.
(defmacro implies* (x y)
`(if ,y t (not ,x)))
(local (defthm implies*-is-implies
(equal (implies a b) (implies* a b))))
)
(defun firstn (n l)
"The sublist of L consisting of its first N elements."
(declare (xargs :guard (and (true-listp l)
(integerp n)
(<= 0 n))))
(cond ((endp l) nil)
((zp n) nil)
(t (cons (car l)
(firstn (1- n) (cdr l))))))
(defthm firstn-0
(equal (firstn 0 rest)
nil))
(defthm firstn-cons
(equal (firstn n (cons a rest))
(if (zp n) nil (cons a (firstn (1- n) rest)))))
(defun restn (n l)
(declare (xargs :guard (and (true-listp l)
(integerp n)
(<= 0 n))))
(if (endp l)
l
(if (zp n)
l
(restn (1- n) (cdr l)))))
(defthm restn-0
(equal (restn 0 rest)
rest))
(defthm restn-cons
(equal (restn n (cons a rest))
(if (zp n) (cons a rest) (restn (1- n) rest))))
(defun tree-size (tree)
(if (atom tree)
1
(+ (tree-size (car tree))
(tree-size (cdr tree)))))
(defthm tree-size-step
(equal (tree-size (cons a b))
(+ (tree-size a)
(tree-size b))))
(defthm tree-size-base
(equal (tree-size 0)
1))
(defun tfirstn (list tree)
(declare (xargs :guard (and (consp tree)
(true-listp list))))
(firstn (tree-size (car tree)) list))
(defun trestn (list tree)
(declare (xargs :guard (and (consp tree)
(true-listp list))))
(restn (tree-size (car tree)) list))
(defun t-carry (c prop gen)
(or (and c prop) gen))
(defthm append-cons
(equal (append (cons a x) y)
(cons a (append x y))))
(defthm append-nil
(equal (append nil y)
y))
; The following macros are handy for reducing the amount of editing necessary
; for translating Nqthm forms into ACL2.
(progn
(defmacro sub1 (x)
`(1- ,x))
(defmacro nlistp (x)
`(atom ,x))
(defmacro caddddr (x)
`(car (cddddr ,x)))
(defmacro cdddddr (x)
`(cdr (cddddr ,x)))
(defmacro cadddddr (x)
`(car (cdddddr ,x)))
(defmacro cddddddr (x)
`(cdr (cdddddr ,x)))
(defmacro caddddddr (x)
`(car (cddddddr ,x)))
(defmacro cdddddddr (x)
`(cdr (cddddddr ,x)))
(defmacro quotient (x y)
`(nonnegative-integer-quotient ,x ,y))
(defmacro remainder (x y)
`(rem ,x ,y))
(defmacro boolp (x)
`(booleanp ,x))
(defmacro bvp (x)
`(boolean-listp ,x))
)
(defun b-buf (x) (if x t nil))
(defun b-not (x) (not x))
(defun b-nand (a b) (not (and a b)))
(defun b-nand3 (a b c) (not (and a b c)))
(defun b-nand4 (a b c d) (not (and a b c d)))
(defun b-xor (a b) (if a (if b nil t) (if b t nil)))
(defun b-xor3 (a b c) (b-xor (b-xor a b) c))
(defun b-equv (x y) (if x (if y t nil) (if y nil t)))
(defun b-equv3 (a b c) (b-equv a (b-xor b c)))
(defun b-and (a b) (and a b))
(defun b-and3 (a b c) (and a b c))
(defun b-or (a b) (or a b))
(defun b-or3 (a b c) (or a b c))
(defun b-nor (a b) (not (or a b)))
(defun b-nor3 (a b c) (not (or a b c)))
(defun b-if (c a b) (if c (if a t nil) (if b t nil)))
#| Unfortunately, b-and is not commutative the way it is defined above.
(defthm b-and-comm
(equal (b-and a b) (b-and b a)))
|#
(defthm b-nand-comm
(equal (b-nand a b) (b-nand b a)))
(defthm b-xor-comm
(equal (b-xor a b) (b-xor b a)))
(defthm b-equv-comm
(equal (b-equv a b) (b-equv b a)))
(defthm b-nor-comm
(equal (b-nor a b) (b-nor b a)))
(defun v-if (c a b)
(declare (xargs :guard (true-listp b)))
(if (nlistp a)
nil
(cons (if (if c (car a) (car b)) t nil)
(v-if c (cdr a) (cdr b)))))
(defthm v-if-base
(equal (v-if c nil nil)
nil))
(defthm v-if-step
(let ((a (cons a0 a1))
(b (cons b0 b1)))
(equal (v-if c a b)
(cons (if c
(if a0 t nil)
(if b0 t nil))
(v-if c a1 b1)))))
(defun v-buf (x)
(if (nlistp x)
nil
(cons (b-buf (car x))
(v-buf (cdr x)))))
(defthm v-buf-base
(equal (v-buf nil)
nil))
(defthm v-buf-step
(let ((a (cons a0 a1)))
(equal (v-buf a)
(cons (b-buf a0)
(v-buf a1)))))
(defun boolfix (x)
(if x t nil))
(defun v-nzerop (x)
(if (nlistp x)
nil
(or (car x)
(v-nzerop (cdr x)))))
(defthm v-nzerop-base
(equal (v-nzerop nil)
nil))
(defthm v-nzerop-step
(let ((a (cons a0 a1)))
(equal (v-nzerop a)
(or a0 (v-nzerop a1)))))
(defun v-zerop (x)
(not (v-nzerop x)))
(defun nat-to-v (x n)
#|
(declare (xargs :guard (and (integerp n)
(not (< n 0))
(rationalp x))))
|#
; Too much trouble at this point.
(declare (xargs :verify-guards nil))
(if (zp n)
nil
(cons (not (zp (remainder x 2)))
(nat-to-v (quotient x 2) (sub1 n)))))
(defun make-nils (n)
(declare (xargs :guard (and (integerp n)
(not (< n 0)))))
(if (zp n)
nil
(cons nil (make-nils (1- n)))))
(defthm nat-to-v-0
(equal (nat-to-v 0 n)
(make-nils n)))
(defthm fold-plus
(implies (and (syntaxp (quotep i))
(syntaxp (quotep j)))
(equal (+ i j x)
(+ (+ i j) x))))
#| We don't really need this any more.
(defthm make-nils-add1
(equal (make-nils (+ 1 n))
(if* (zp (+ 1 n))
nil
(cons nil (make-nils n))))
:hints (("Goal" :expand (make-nils (+ 1 n)))))
|#
(defun v-not (x)
(if (nlistp x)
nil
(cons (b-not (car x))
(v-not (cdr x)))))
(defthm v-not-base
(equal (v-not nil) nil))
(defthm v-not-step
(let ((a (cons a0 a1)))
(equal (v-not a)
(cons (b-not a0)
(v-not a1)))))
(defun v-xor (x y)
(declare (xargs :guard (true-listp y)))
(if (nlistp x)
nil
(cons (b-xor (car x) (car y))
(v-xor (cdr x) (cdr y)))))
(defthm v-xor-base
(equal (v-xor nil x)
nil))
(defthm v-xor-step
(let ((a (cons a0 a1))
(b (cons b0 b1)))
(equal (v-xor a b)
(cons (b-xor a0 b0)
(v-xor a1 b1)))))
(defun v-or (x y)
(declare (xargs :guard (true-listp y)))
(if (nlistp x)
nil
(cons (b-or (car x) (car y))
(v-or (cdr x) (cdr y)))))
(defthm v-or-base
(equal (v-or nil x)
nil))
(defthm v-or-step
(let ((a (cons a0 a1))
(b (cons b0 b1)))
(equal (v-or a b)
(cons (b-or a0 b0)
(v-or a1 b1)))))
(defun v-and (x y)
(declare (xargs :guard (true-listp y)))
(if (nlistp x)
nil
(cons (b-and (car x) (car y))
(v-and (cdr x) (cdr y)))))
(defthm v-and-base
(equal (v-and nil x)
nil))
(defthm v-and-step
(let ((a (cons a0 a1))
(b (cons b0 b1)))
(equal (v-and a b)
(cons (b-and a0 b0)
(v-and a1 b1)))))
(defthm consp-cons
(equal (consp (cons x y)) t))
(defthm nth-cons
(equal (nth n (cons a x))
(if* (zp n)
a
(nth (- n 1) x))))
(defthm len-cons
(equal (len (cons a x))
(+ 1 (len x))))
(defthm len-nil
(equal (len nil) 0))
(defthm if*-hide
(implies (equal x y)
(equal x (if* test y (hide x))))
:hints (("Goal" :expand (hide x)))
:rule-classes nil)
(defun v-equal (x y)
(if (nlistp x)
(and (equal x nil) (equal y nil))
(and (consp y)
(equal (car x) (car y))
(v-equal (cdr x) (cdr y)))))
(defthm v-equal-base
(equal (v-equal nil x)
(equal x nil)))
(defthm v-equal-step
(let ((a (cons a0 a1))
(b (cons b0 b1)))
(equal (v-equal a b)
(and (equal a0 b0)
(v-equal a1 b1)))))
(defun vcond-macro (clauses)
; From ACL2 cond-macro.
(declare (xargs :guard (cond-clausesp clauses)))
(if (consp clauses)
(if (and (eq (car (car clauses)) t)
(eq (cdr clauses) nil))
(if (cdr (car clauses))
(car (cdr (car clauses)))
(car (car clauses)))
(list 'v-if (car (car clauses))
(if (cdr (car clauses))
(car (cdr (car clauses)))
(car (car clauses)))
(vcond-macro (cdr clauses))))
nil))
(defmacro vcond (&rest clauses)
(declare (xargs :guard (cond-clausesp clauses)))
(vcond-macro clauses))
(defun bv2p (a b)
(and (bvp a)
(bvp b)
(equal (len a) (len b))))
(defun v-trunc (x n)
(declare (xargs :guard (and (bvp x)
(integerp n)
(not (< n 0)))))
(if (zp n)
nil
(cons (boolfix (car x))
(v-trunc (cdr x) (1- n)))))
(defthm v-trunc-0
(equal (v-trunc x 0)
nil))
(defthm v-trunc-cons
(equal (v-trunc (cons a x) n)
(if (zp n)
nil
(cons (boolfix a)
(v-trunc x (1- n))))))
(defthm len-v-trunc
(equal (len (v-trunc x y))
(nfix y)))
(defthm nfix-len
(equal (nfix (len x))
(len x)))
(defthm v-trunc-v-buf
(implies (equal n (len a))
(equal (v-trunc (v-buf a) n)
(v-buf a))))
(defthm len-nat-to-v
(equal (len (nat-to-v i n))
(nfix n)))
(defthm len-v-not
(equal (len (v-not v))
(len v)))
(defun v-shift-right (a si)
(if (nlistp a)
nil
(append (v-buf (cdr a))
(cons (boolfix si) nil))))
(encapsulate
()
(local
(defthm v-trunc-v-shift-right-lemma
(equal (v-trunc (v-shift-right a c) (len a))
(v-shift-right a c))))
(defthm v-trunc-v-shift-right
(implies (equal n (len a))
(equal (v-trunc (v-shift-right a c) n)
(v-shift-right a c)))
:hints (("Goal" :in-theory (disable v-shift-right))))
)
(defthm v-trunc-v-xor
(implies (equal n (len a))
(equal (v-trunc (v-xor a b) n)
(v-xor a b))))
(encapsulate
()
(local
(defthm v-trunc-v-or-lemma
(implies (bv2p a b)
(equal (v-trunc (v-or a b) (len a))
(v-or a b)))))
(defthm v-trunc-v-or
(implies (and (bv2p a b)
(equal n (len a)))
(equal (v-trunc (v-or a b) n)
(v-or a b)))))
(defthm v-trunc-v-not
(implies (equal n (len a))
(equal (v-trunc (v-not a) n)
(v-not a))))
(defthm len-v-buf
(equal (len (v-buf v))
(len v)))
(defthm len-v-xor
(equal (len (v-xor a b))
(len a)))
(defthm len-v-and
(equal (len (v-and a b))
(len a)))
(defthm len-v-or
(equal (len (v-or a b))
(len a)))
; We probably don't need to prove any lemmas about make-tree; we expect to use
; it applied to specific n.
(defun make-tree (n)
(declare (xargs :guard (and (integerp n)
(not (< n 0)))))
(if (zp n)
0
(if (= n 1)
0
(cons (make-tree (quotient n 2))
(make-tree (- n (quotient n 2)))))))
|