/usr/share/acl2-7.2dfsg/books/arithmetic/equalities.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | ; ACL2 books on arithmetic
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Written by:
; Matt Kaufmann, Bishop Brock, and John Cowles, with help from Art Flatau
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
(in-package "ACL2")
#-:non-standard-analysis
(defmacro real-listp (l)
`(rational-listp ,l))
(include-book "cowles/acl2-crg" :dir :system)
(defsection fc
:parents (arithmetic-1)
:short "Identity macro — does nothing, you can safely ignore this."
:long "<p>@(call fc) just expands to @('x'). This macro is a historic
artifact that was originally used in the @('arithmetic') library as a way to
experiment with using @(see force).</p>
@(def fc)"
#|
(defmacro fc (x)
(list 'force x))
|#
(defmacro fc (x)
x))
(defsection basic-sum-normalization
:parents (arithmetic-1)
:short "Trivial normalization and cancellation rules for sums."
(defthm commutativity-2-of-+
(equal (+ x (+ y z))
(+ y (+ x z))))
(defthm functional-self-inversion-of-minus
(equal (- (- x))
(fix x)))
(defthm distributivity-of-minus-over-+
(equal (- (+ x y))
(+ (- x) (- y))))
(defthm minus-cancellation-on-right
(equal (+ x y (- x))
(fix y)))
(defthm minus-cancellation-on-left
(equal (+ x (- x) y)
(fix y)))
; Note that the cancellation rules below (and similarly for *) aren't
; complete, in the sense that the element to cancel could be on the
; left side of one expression and the right side of the other. But
; perhaps those situations rarely arise in practice. (?)
(defthm right-cancellation-for-+
(equal (equal (+ x z)
(+ y z))
(equal (fix x) (fix y))))
(defthm left-cancellation-for-+
(equal (equal (+ x y)
(+ x z))
(equal (fix y) (fix z))))
(defthm equal-minus-0
(equal (equal 0 (- x))
(equal 0 (fix x))))
(defthm inverse-of-+-as=0
(equal (equal (- a b) 0)
(equal (fix a) (fix b))))
(defthm equal-minus-minus
(equal (equal (- a) (- b))
(equal (fix a) (fix b))))
(defthm fold-consts-in-+
(implies (and (syntaxp (quotep x))
(syntaxp (quotep y)))
(equal (+ x (+ y z))
(+ (+ x y) z)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Facts about * (and /)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The same as Inverse-of-*, from axioms.lisp, but with force.
#|
(defaxiom right-inverse-of-*
(implies (and (acl2-numberp x)
(not (equal x 0)))
(equal (* x (/ x)) 1)))
|#
#| The following proof of commutativity-2-of-* was originally obtained by using
John Cowles's macro acl2-asg::add-commutativity-2 as follows, and
then editing out package references in the statement of the final
theorem.
(acl2-asg::add-commutativity-2 equal
acl2-numberp
*
commutativity-of-*
commutativity-2-of-*)
|#
(defsection basic-product-normalization
:parents (arithmetic-1)
:short "Trivial normalization and cancellation rules for products."
(defthm commutativity-2-of-*
(equal (* x (* y z))
(* y (* x z)))
:hints (("Goal" :use (:instance
(:functional-instance acl2-asg::commutativity-2-of-op
(acl2-asg::equiv equal)
(acl2-asg::pred (lambda (x) t))
(acl2-asg::op binary-*))
(acl2-asg::x x)
(acl2-asg::y y)
(acl2-asg::z z)))))
(defthm functional-self-inversion-of-/
(equal (/ (/ x)) (fix x))
:hints (("Goal" :use ((:instance (:functional-instance
acl2-agp::Involution-of-inv
(acl2-agp::equiv equal)
(acl2-agp::pred (lambda (x)
(and (acl2-numberp x)
(not (equal x 0)))))
(acl2-agp::op binary-*)
(acl2-agp::id (lambda () 1))
(acl2-agp::inv unary-/))
(acl2-agp::x x))))))
(defthm distributivity-of-/-over-*
(equal (/ (* x y))
(* (/ x) (/ y)))
:hints (("Goal" :use ((:instance (:functional-instance
acl2-agp::Distributivity-of-inv-over-op
(acl2-agp::equiv equal)
(acl2-agp::pred (lambda (x)
(and (acl2-numberp x)
(not (equal x 0)))))
(acl2-agp::op binary-*)
(acl2-agp::id (lambda () 1))
(acl2-agp::inv unary-/))
(acl2-agp::x x)
(acl2-agp::y y))))))
(defthm /-cancellation-on-right
(implies (and (fc (acl2-numberp x))
(fc (not (equal x 0))))
(equal (* x y (/ x))
(fix y)))
:hints (("Goal" :use ((:instance (:functional-instance
acl2-agp::inv-cancellation-on-right
(acl2-agp::equiv equal)
(acl2-agp::pred (lambda (x)
(and (acl2-numberp x)
(not (equal x 0)))))
(acl2-agp::op binary-*)
(acl2-agp::id (lambda () 1))
(acl2-agp::inv unary-/))
(acl2-agp::x x)
(acl2-agp::y y))))))
(defthm /-cancellation-on-left
(implies (and (fc (acl2-numberp x))
(fc (not (equal 0 x))))
(equal (* x (/ x) y)
(fix y)))
:hints (("Goal" :use /-cancellation-on-right)))
(local
(defthm right-cancellation-for-*-lemma
(implies (and (equal (* x z) (* y z))
(acl2-numberp z)
(not (equal 0 z))
(acl2-numberp x)
(acl2-numberp y))
(equal (equal x y) t))
:hints (("Goal" :use ((:instance (:functional-instance
acl2-agp::Right-cancellation-for-op
(acl2-agp::equiv equal)
(acl2-agp::pred (lambda (x)
(and (acl2-numberp x)
(not (equal x 0)))))
(acl2-agp::op binary-*)
(acl2-agp::id (lambda () 1))
(acl2-agp::inv unary-/))
(acl2-agp::x x)
(acl2-agp::y y)
(acl2-agp::z z)))))))
(defthm right-cancellation-for-*
(equal (equal (* x z) (* y z))
(or (equal 0 (fix z))
(equal (fix x) (fix y)))))
(defthm left-cancellation-for-*
(equal (equal (* z x) (* z y))
(or (equal 0 (fix z))
(equal (fix x) (fix y)))))
(defthm Zero-is-only-zero-divisor
(equal (equal (* x y) 0)
(or (equal (fix x) 0)
(equal (fix y) 0))))
(defthm equal-*-x-y-x
(equal (equal (* x y) x)
(or (equal x 0)
(and (equal y 1)
(acl2-numberp x))))
:hints (("Goal" :use ((:instance right-cancellation-for-*
(z x)
(x y)
(y 1))))))
(defthm equal-*-x-y-y
(equal (equal (* x y) y)
(or (equal y 0)
(and (equal x 1)
(acl2-numberp y))))
:hints (("Goal" :use ((:instance right-cancellation-for-*
(z y)
(x x)
(y 1))))))
(local (defthm equal-/-lemma
(implies (and (acl2-numberp x)
(acl2-numberp y)
(equal (* x y) 1))
(equal y (/ x)))
:rule-classes nil
:hints (("Goal" :use (:instance (:functional-instance
acl2-agp::Uniqueness-of-op-inverses
(acl2-agp::equiv equal)
(acl2-agp::pred (lambda (x)
(and (acl2-numberp x)
(not (equal x 0)))))
(acl2-agp::op binary-*)
(acl2-agp::id (lambda () 1))
(acl2-agp::inv unary-/))
(acl2-agp::x x)
(acl2-agp::y y))))))
(defthm equal-/
(implies (and (fc (acl2-numberp x))
(fc (not (equal 0 x))))
(equal (equal (/ x) y)
(equal 1 (* x y))))
:hints (("Goal" :use equal-/-lemma)))
; The following hack helps in the application of equal-/ when forcing is
; turned off.
(defthm numerator-nonzero-forward
(implies (not (equal (numerator r) 0))
(and (not (equal r 0))
(acl2-numberp r)))
:rule-classes
((:forward-chaining :trigger-terms
((numerator r)))))
; The following loops with the lemma equal-/ just proved but is
; sometimes useful.
(encapsulate
()
(local (defthm Uniqueness-of-*-inverses-lemma
(equal (equal (* x y) 1)
(and (not (equal x 0))
(acl2-numberp x)
(equal y (/ x))))))
(defthm Uniqueness-of-*-inverses
(equal (equal (* x y) 1)
(and (not (equal (fix x) 0))
(equal y (/ x))))
:hints (("Goal" :in-theory (disable equal-/)))))
(in-theory (disable Uniqueness-of-*-inverses))
(theory-invariant
(not (and (active-runep '(:rewrite Uniqueness-of-*-inverses))
(active-runep '(:rewrite equal-/)))))
(encapsulate
()
(local (defthm equal-/-/-lemma
(implies (and (fc (acl2-numberp a))
(fc (acl2-numberp b))
(fc (not (equal a 0)))
(fc (not (equal b 0))))
(equal (equal (/ a) (/ b))
(equal a b)))
:hints
(("Goal" :use ((:instance (:theorem (implies
(and (fc (acl2-numberp a))
(fc (acl2-numberp b))
(fc (not (equal a 0)))
(fc (not (equal b 0))))
(implies (equal a b)
(equal (/ a) (/ b)))))
(a (/ a)) (b (/ b))))))
:rule-classes nil))
(defthm equal-/-/
(equal (equal (/ a) (/ b))
(equal (fix a) (fix b)))
:hints (("Goal" :use equal-/-/-lemma
:in-theory (disable equal-/)))))
(defthm equal-*-/-1
(implies (and (acl2-numberp x)
(not (equal x 0)))
(equal (equal (* (/ x) y) z)
(and (acl2-numberp z)
(equal (fix y) (* x z))))))
(defthm equal-*-/-2
(implies (and (acl2-numberp x)
(not (equal x 0)))
(equal (equal (* y (/ x)) z)
(and (acl2-numberp z)
(equal (fix y) (* z x))))))
(defthm fold-consts-in-*
(implies (and (syntaxp (quotep x))
(syntaxp (quotep y)))
(equal (* x (* y z))
(* (* x y) z))))
(defthm times-zero
;; We could prove an analogous rule about non-numeric coefficients, but
;; this one has efficiency advantages: it doesn't match too often, it has
;; no hypothesis, and also we know that the 0 is the first argument so we
;; don't need two versions. Besides, we won't need this too often; it's
;; a type-reasoning fact. But it did seem useful in the proof of a meta
;; lemma about times cancellation, so we include it here.
(equal (* 0 x) 0)))
(defsection basic-products-with-negations
:parents (arithmetic-1)
:short "Rules for normalizing products with negative factors, and reciprocals
of negations."
(local (defthm functional-commutativity-of-minus-*-right-lemma
(implies (and (fc (acl2-numberp x))
(fc (acl2-numberp y)))
(equal (* x (- y))
(- (* x y))))
:hints (("Goal" :use ((:instance (:functional-instance
acl2-crg::functional-commutativity-of-minus-times-right
(acl2-crg::equiv equal)
(acl2-crg::pred acl2-numberp)
(acl2-crg::plus binary-+)
(acl2-crg::times binary-*)
(acl2-crg::zero (lambda () 0))
(acl2-crg::minus unary--))
(acl2-crg::x x)
(acl2-crg::y y)))))
:rule-classes nil))
(defthm functional-commutativity-of-minus-*-right
(equal (* x (- y))
(- (* x y)))
:hints (("Goal" :use functional-commutativity-of-minus-*-right-lemma)))
(defthm functional-commutativity-of-minus-*-left
(equal (* (- x) y)
(- (* x y))))
(defthm reciprocal-minus
(equal (/ (- x))
(- (/ x)))
:hints (("Goal" :cases
((and (fc (acl2-numberp x))
(fc (not (equal x 0)))))))))
(defsection basic-rational-identities
:parents (arithmetic-1 numerator denominator)
:short "Basic cancellation rules for @('numerator') and @('denominator') terms."
:long "<p>See also @(see more-rational-identities) for additional reductions
involving @('numerator') and @('denominator') terms.</p>"
(local (defthm numerator-integerp-lemma-1
(implies (rationalp x)
(equal (* (* (numerator x) (/ (denominator x))) (denominator x))
(numerator x)))
:rule-classes nil
:hints (("Goal" :in-theory (disable rational-implies2)))))
(local (defthm numerator-integerp-lemma
(implies (and (rationalp x)
(equal (* (numerator x) (/ (denominator x)))
x))
(equal (numerator x)
(* x (denominator x))))
:rule-classes nil
:hints (("Goal" :use (numerator-integerp-lemma-1)
:in-theory (disable rational-implies2)))))
(defthm numerator-when-integerp
(implies (integerp x)
(equal (numerator x)
x))
:hints (("Goal" :in-theory (disable rational-implies2)
:use ((:instance lowest-terms (r x)
(q 1)
(n (denominator x)))
rational-implies2
numerator-integerp-lemma))))
(defthm integerp==>denominator=1
(implies (integerp x)
(equal (denominator x) 1))
:hints (("Goal" :use (rational-implies2 numerator-when-integerp)
:in-theory (disable rational-implies2))))
(defthm equal-denominator-1
(equal (equal (denominator x) 1)
(or (integerp x)
(not (rationalp x))))
:hints (("Goal" :use (rational-implies2 completion-of-denominator)
:in-theory (disable rational-implies2))))
(defthm *-r-denominator-r
(equal (* r (denominator r))
(if (rationalp r)
(numerator r)
(fix r)))
:hints (("Goal" :use ((:instance rational-implies2 (x r)))
:in-theory (disable rational-implies2))))
(defthm /r-when-abs-numerator=1
(and (implies (equal (numerator r) 1)
(equal (/ r) (denominator r)))
(implies (equal (numerator r) -1)
(equal (/ r) (- (denominator r)))))
:hints (("Goal" :use ((:instance rational-implies2 (x r)))
:in-theory (disable rational-implies2)))))
;; Much of this is adapted from John Cowles's @('acl2-exp.lisp') book. There
;; are various modifications, however, including some by Ruben Gamboa to
;; support non-standard analysis in the non-standard version of ACL2, ACL2(r);
;; see :doc real.
(defsection basic-expt-type-rules
:parents (arithmetic-1 expt)
:short "Rules about when @('expt') produces integers, positive numbers, etc."
#+:non-standard-analysis
(defthm expt-type-prescription-realp
(implies (realp r)
(realp (expt r i)))
:rule-classes (:type-prescription :generalize))
(defthm expt-type-prescription-rationalp
(implies (rationalp r)
(rationalp (expt r i)))
:rule-classes (:type-prescription :generalize))
;; This theorem was strengthened to allow all real numbers (but reduces to
;; the version with a rationalp hypothesis in for ACL2, as opposed to
;; ACL2(r)).
(defthm expt-type-prescription-positive
(implies (and (< 0 r)
(real/rationalp r))
(< 0 (expt r i)))
:rule-classes (:type-prescription :generalize))
(defthm expt-type-prescription-nonzero
(implies (and (fc (acl2-numberp r))
(not (equal r 0)))
(not (equal 0 (expt r i))))
:rule-classes (:type-prescription :generalize))
(defthm expt-type-prescription-integerp
(implies (and (<= 0 i)
(integerp r))
(integerp (expt r i)))
:rule-classes (:type-prescription :generalize))
(in-theory
;; [Jared] Some of these type-prescription rules for expt, above, are
;; duplicates of built-in ACL2 rules:
;;
;; new rule duplicates
;; ---------------------------------------------------------------------------------
;; EXPT-TYPE-PRESCRIPTION-RATIONALP RATIONALP-EXPT-TYPE-PRESCRIPTION
;; EXPT-TYPE-PRESCRIPTION-NONZERO EXPT-TYPE-PRESCRIPTION-NON-ZERO-BASE
;;
;; Since the new rules above have :generalize rule-classes as well, I'm going to
;; disable the built-in ACL2 rules.
(disable RATIONALP-EXPT-TYPE-PRESCRIPTION
EXPT-TYPE-PRESCRIPTION-NON-ZERO-BASE)))
(defsection basic-expt-normalization
:parents (arithmetic-1 expt)
:short "Basic rules for normalizing and simplifying exponents."
;; [Jared] removing since it is redundant with expt-1, below
;; (defthm Left-nullity-of-1-for-expt
;; (equal (expt 1 i) 1))
(defthm Right-unicity-of-1-for-expt
(equal (expt r 1)
(fix r))
:hints (("Goal" :expand (expt r 1))))
(defthm expt-minus
(equal (expt r (- i))
(/ (expt r i))))
;; The following is superseded by exponents-add below, except for the case
;; that r = 0. But I'll leave it here; in fact it's quite natural to have
;; (roughly speaking) two versions of each rule about expt, based on the
;; disjunction in the guard for expt.
(defthm Exponents-add-for-nonneg-exponents
;; We don't need that r is non-zero for this one.
(implies (and (<= 0 i)
(<= 0 j)
(fc (integerp i))
(fc (integerp j)))
(equal (expt r (+ i j))
(* (expt r i)
(expt r j)))))
(encapsulate
()
(local (defthm Exponents-add-negative-negative
(implies (and (integerp i)
(integerp j)
(< i 0)
(< j 0))
(equal (expt r (+ i j))
(* (expt r i)
(expt r j))))
:rule-classes nil))
(local (defthm Exponents-add-positive-negative
(implies (and (integerp i)
(integerp j)
(acl2-numberp r)
(not (equal r 0))
(< 0 i)
(< j 0))
(equal (expt r (+ i j))
(* (expt r i)
(expt r j))))
:hints (("Goal" :expand (expt r (+ i j))))
:rule-classes nil))
(defthm Exponents-add
; The first two (syntaxp) hypotheses below are new for Version_2.6. Without
; this change there can be looping with the definition of expt, for example on
; the following (thanks to Eric Smith for reporting the problem from which this
; example was culled). (By the way, this example is probably not a theorem;
; the point here is to avoid looping.) But see also
; Exponents-add-unrestricted.
#|
(thm (IMPLIES (AND (NOT (ZIP P))
(< 0 P)
(< (* 2 (+ P -1) (/ (EXPT 2 (+ P -1))))
1)
(INTEGERP P)
(< 1 P)
(INTEGERP Q)
(< 0 Q))
(< (* 2 P (/ (EXPT 2 P))) 1)))
|#
(implies (and (syntaxp (not (and (quotep i) (integerp (cadr i))
(or (equal (cadr i) 1)
(equal (cadr i) -1)))))
(syntaxp (not (and (quotep j) (integerp (cadr j))
(or (equal (cadr j) 1)
(equal (cadr j) -1)))))
(not (equal 0 r))
(fc (acl2-numberp r))
(fc (integerp i))
(fc (integerp j)))
(equal (expt r (+ i j))
(* (expt r i)
(expt r j))))
:hints (("Goal" :use
(Exponents-add-negative-negative
Exponents-add-positive-negative
(:instance Exponents-add-positive-negative
(i j) (j i)))))))
(defthm Exponents-add-unrestricted
; The comment above in Exponents-add explains why we do not leave this rule
; enabled. But we include it in case it is of use. For example, Exponents-add
; is not sufficient for the proof of expt-is-increasing-for-base>1 in
; inequalities.lisp.
(implies (and (not (equal 0 r))
(fc (acl2-numberp r))
(fc (integerp i))
(fc (integerp j)))
(equal (expt r (+ i j))
(* (expt r i)
(expt r j)))))
(in-theory (disable Exponents-add-unrestricted))
(defthm Distributivity-of-expt-over-*
(equal (expt (* a b) i)
(* (expt a i)
(expt b i))))
;; It's not clear to me whether the following rule belongs this way or the
;; other way around, but I'll leave it this way -- mk.
(defthm expt-1
(equal (expt 1 x) 1))
(defthm Exponents-multiply
(implies (and (fc (integerp i))
(fc (integerp j)))
(equal (expt (expt r i) j)
(expt r (* i j))))
:hints (("Goal" :cases
((not (acl2-numberp r))
(equal r 0)))))
(defthm Functional-commutativity-of-expt-/-base
(equal (expt (/ r) i)
(/ (expt r i))))
;; Added 6/01 by Matt Kaufmann in response to an example sent by John Cowles
;; that cannot be proved without it, shown below. Actually this rule was
;; suggested by J Moore.
(defthm equal-constant-+
(implies (syntaxp (and (quotep c1)
(quotep c2)))
(equal (equal (+ c1 x) c2)
(if (acl2-numberp c2)
(if (acl2-numberp x)
(equal x (- c2 c1))
(equal (fix c1) c2))
nil)))))
#| John Cowles's example (see rule above); without the rule above the following
hint is needed for the thm form below:
; :hints (("Goal"
; :use (:theorem
; (implies (equal (+ -1 x) 3)
; (equal x 4)))))
(include-book
"/meru1/cowles/acl2/ver2.5/acl2-sources/books/arithmetic/top-with-meta")
(defun ;; compute 2^n ; ; ;
pow (n)
(if (zp n)
1
(* 2 (pow (- n 1)))))
(defun e (x) ;; product from i=1 to x of 2^i - 1 ; ; ;
(if (zp x)
1
(* (- (pow x) 1)(e (- x 1)))))
(defun
e1 (x)
(if (zp x)
1
(* (pow x)(e1 (- x 1)))))
(thm
;; some complicated hyps removed ; ; ;
(IMPLIES (EQUAL (+ -1 X) 3)
(EQUAL (+ (* 384 (POW (+ -4 X)))
(- (* 768 (POW (+ -4 X)) (POW (+ -4 X))))
(* 3456
(/ (+ (- (* 2 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))))
(* 4 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X)))))))
(+ (- (* 64 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))))
(* 128 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X)))
(* 256 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X)))
(* 512 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X)))
(- (* 512 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))))
(- (* 1024 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))))
(- (* 2048 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))))
(* 4096 (E (+ -4 X))
(E1 (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X))
(POW (+ -4 X)))))))
|#
|