/usr/share/acl2-7.2dfsg/books/arithmetic/binomial.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | ;;; Contributed by Ruben A. Gamboa
; Copyright (C) 2014, University of Wyoming
; All rights reserved.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;;; This file includes a proof of the binomial theorem.
(in-package "ACL2")
(local (include-book "top"))
(include-book "factorial")
(include-book "sumlist")
;; We begin with the definition of (choose k n), which counts the
;; number of ways k items can be selected out of n distinct items.
(defun choose (k n)
; (declare (xargs :guard (and (integerp k) (integerp n) (<= 0 k) (<= k n))))
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(/ (factorial n)
(* (factorial k) (factorial (- n k))))
0))
;; Unfortunately, ACL2 looks at the previous definition and assumes
;; that choose is a rational number -- not necessarily integer. So
;; our first step is to establish the fact that choose is an integer
;; function. First we need a few simplification rules.
;; The first rule is that n!/(n-1)! is equal to n.....
(defthm factorial-n/n-1
(implies (and (integerp n)
(<= 1 n))
(equal (* (factorial n)
(/ (factorial (+ -1 n))))
n))
:hints (("Goal" :expand ((factorial n)))))
;; A more powerful rule is that n!*x/(n-1)! is equan to n*x.
(local
(defthm factorial-n/n-1/x
(implies (and (integerp n)
(<= 1 n))
(equal (* (factorial n)
(/ (factorial (+ -1 n)))
x)
(* n x)))))
;; Now, we can prove the following lemma, which was suggested to us by
;; Matt Kaufmann (thanks, Matt!). We show that the choose function
;; can be defined by a recurrence relation. Basically, the way to
;; choose k things out of n things is to choose 1 thing and take it
;; out. Then, if we decide to choose that item, we need to pick an
;; additional k-1 things out of n-1 things; if not, we still need to
;; pick k things out of n-1 things.... The sum of those is the number
;; we want.
(defthm choose-reduction
(implies (and (integerp k)
(integerp n)
(< 0 k)
(< k n))
(equal (choose k n)
(+ (choose (1- k) (1- n))
(choose k (1- n)))))
; Matt K. change for v2-9: Subgoal number has changed, probably because of the
; change to call-stack to preserve quote-normal form.
:hints (("Subgoal 4'" :expand ((factorial n))))
:rule-classes nil)
;; So, we can define a new function choose-mk which follows the
;; recurrence mentioned above....
(defun choose-mk (k n)
(if (and (integerp k)
(integerp n))
(if (and (< 0 k)
(< k n))
(+ (choose-mk (1- k) (1- n))
(choose-mk k (1- n)))
(if (and (<= 0 k)
(<= k n))
1
0))
0))
;; ...and we can prove that it's the exact same function as choose.
(defthm choose-mk-choose
(equal (choose-mk k n)
(choose k n))
:hints (("Goal" :induct (choose-mk k n))
("Subgoal *1/1" :use (:instance choose-reduction)
:in-theory (disable choose)))
:rule-classes nil)
;; Now, the function choose-mk is obviously integer, so that means
;; choose must be obviously integer!
(defthm choose-is-non-negative-integer
(and (integerp (choose k n))
(<= 0 (choose k n)))
:hints (("Goal" :use (:instance choose-mk-choose)
:in-theory (disable choose choose-mk)))
:rule-classes (:rewrite :type-prescription))
;; We can now define the binomial expansion of (x+y)^n, starting at
;; the term containing x^k. I.e., to get the entire binomial
;; expansion, use (binomial-expansion x y 0 n).
(defun binomial-expansion (x y k n)
(declare (xargs :measure (nfix (1+ (- n k)))))
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (* (choose k n) (expt x k) (expt y (- n k)))
(binomial-expansion x y (1+ k) n))
nil))
;; We find it useful to explicitly define the expansion of x*(x+y)^n.
(defun binomial-expansion-times-x (x y k n)
(declare (xargs :measure (nfix (1+ (- n k)))))
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (* (choose k n) (expt x (1+ k)) (expt y (- n k)))
(binomial-expansion-times-x x y (1+ k) n))
nil))
;; This lemma shows that our expansion for x*(x+y)^n indeed works.
(defthm binomial-expansion-times-x-correct
(equal (* x (sumlist (binomial-expansion x y k n)))
(sumlist (binomial-expansion-times-x x y k n)))
:hints (("Goal" :in-theory (disable choose))))
;; Similarly, we define an expansion of y*(x+y)^n....
(defun binomial-expansion-times-y (x y k n)
(declare (xargs :measure (nfix (1+ (- n k)))))
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (* (choose k n) (expt x k) (expt y (1+ (- n k))))
(binomial-expansion-times-y x y (1+ k) n))
nil))
;; ...and prove it works, too.
(defthm binomial-expansion-times-y-correct
(equal (* y (sumlist (binomial-expansion x y k n)))
(sumlist (binomial-expansion-times-y x y k n)))
:hints (("Goal" :in-theory (disable choose))))
;; The following function expands (x+y)^n in a manner reminiscent of
;; Pascal's triangle. Consider (x+y)^n. It is equal to
;; (x+y)*(x+y)^{n-1} or x*(x+y)^{n-1} + y*(x+y)^{n-1}. If we can show
;; that the binomial theorem is true for (x+y)^{n-1} (for induction,
;; for example), then we can reduce (x+y)^n to x times the binomial
;; expansion of (x+y)^{n-1} plus y times the binomial expansion of
;; (x+y)^{n-1} -- and we already have a function for x/y * the
;; binomial expansion of (x+y) from above! We start with a function
;; which computes x*(x+y)^{n-1} + y*(x+y)^{n-1} by interleaving the
;; terms from each of the two sums. I.e., x*a1, y*a1, x*a2, y*a2, etc
;; where ai are the terms in the binomial expansion of (x+y)^{n-1}.
(defun binomial-expansion-triangle (x y k n)
(declare (xargs :measure (nfix (1+ (- n k)))))
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (* (choose k n) (expt x (1+ k)) (expt y (- n k)))
(cons (* (choose k n) (expt x k) (expt y (1+ (- n k))))
(binomial-expansion-triangle x y (1+ k) n)))
nil))
;; This is the key lemma that states that our function defined above
;; really does behave the way we said it did.
(defthm binomial-expansion-times-x-plus-times-y
(equal (+ (sumlist (binomial-expansion-times-x x y k n))
(sumlist (binomial-expansion-times-y x y k n)))
(sumlist (binomial-expansion-triangle x y k n)))
:hints (("Goal" :in-theory (disable choose expt))))
;; The following function computes the same value, but it does it by
;; emulating Pascal's triangle directly. We will next show that this
;; function computes the same value as above, and hence that it is a
;; faithful computation of (a+b)^n. Later, we will only have to
;; reduct the two choose terms below by collecting like x^k*y^{n-k}
;; terms and we'll have the needed result.
(defun binomial-expansion-pascal-triangle (x y k n)
(declare (xargs :measure (nfix (1+ (- n k)))))
(if (and (integerp k) (integerp n) (<= 0 k))
(if (< k n)
(cons (* (choose k n) (expt x (1+ k)) (expt y (- n k)))
(cons (* (choose (1+ k) n) (expt x (1+ k)) (expt y (- n k)))
(binomial-expansion-pascal-triangle x y (1+ k) n)))
(if (= k n)
(list (* (choose k n) (expt x (1+ k)) (expt y (- n k))))
nil))
nil))
;; Interesting that ACL2 needs a rewrite rule for this....
(local
(defthm silly-inequality
(implies (and (integerp k)
(integerp n)
(< k n))
(<= (+ 1 k) n))))
;; Now we need to show ACL2 how to reduse some of the terms that
;; appear in the main proof below. First (choose k k) is equal to 1
;; (except in malformed cases when it's equal to 0).
(local
(defthm choose-k-k
(equal (choose k k)
(if (and (integerp k) (<= 0 k))
1
0))))
;; I think this is proved elsewhere, but x^0 = 1.
(local
(defthm expt-x-0
(equal (expt x 0) 1)))
;; Now, the binomial-expansion-triangle function returns an empty list
;; when we want to start at item k+1 and go up to item k....
(local
(defthm binomial-expansion-triangle-x-y-k-1+k
(equal (binomial-expansion-triangle x y (+ 1 k) k) nil)
:hints (("Goal" :expand (binomial-expansion-triangle x y (+ 1 k) K)))))
;; We also show how the last term in the binomial-expansion-triangle
;; is expanded.
(local
(defthm binomial-expansion-triangle-x-y-k-k-lemma
(equal (binomial-expansion-triangle x y k k)
(if (and (integerp k) (<= 0 k))
(list (expt x (1+ k))
(* (expt x k) y))
nil))))
;; And finally, we can show that the Pascal triangle develops the
;; correct binomial coefficients....
(defthm binomial-expansion-pascal-triangle-correct
(implies (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(equal (sumlist (binomial-expansion-triangle x y k n))
(+ (* (choose k n) (expt x k) (expt y (1+ (- n k))))
(sumlist (binomial-expansion-pascal-triangle x y k n)))))
:hints (("Goal"
:in-theory (disable choose expt
right-unicity-of-1-for-expt
expt-minus distributivity-of-expt-over-*
exponents-multiply
functional-commutativity-of-expt-/-base
exponents-add
exponents-add-for-nonneg-exponents))
("Subgoal *1/5"
:in-theory (disable choose expt))))
;; Now, we show what happens when we try to get the binomial-expansion
;; of an empty interval.
(defthm binomial-expansion-zero
(implies (< n k)
(equal (binomial-expansion x y k n) nil)))
;; From our previous lemma, we can establish quickly that the Pascal
;; triangle computes the same value as the binomial expansion.
(defthm pascal-triangle-binomial
(implies (and (integerp k) (integerp n) (<= 0 k))
(equal (sumlist (binomial-expansion-pascal-triangle x y k n))
(sumlist (binomial-expansion x y (1+ k) (1+ n)))))
:hints (("Goal"
:induct (binomial-expansion-pascal-triangle x y k n)
:in-theory (disable choose expt
right-unicity-of-1-for-expt
expt-minus distributivity-of-expt-over-*
exponents-multiply
functional-commutativity-of-expt-/-base
exponents-add
exponents-add-for-nonneg-exponents))
("Subgoal *1/1''"
:use ((:instance choose-reduction
(k (+ 1 k))
(n (+ 1 n)))))))
;; We are almost ready now to prove the binomial theorem. First, we
;; show ACL2 how to evaluate more terms that appear in the proofs to
;; follow. For example, there's only 1 way to choose the empty set
;; out of a bunch of items -- unless we have a malformed set, in which
;; case it happens to be 0....
(defthm choose-0-n
(equal (choose 0 n)
(if (and (integerp n) (<= 0 n))
1
0)))
;; The heart of the proof is the following lemma, which formalizes the
;; (x+y)^n = x*(x+y)^{n-1} + y*(x+y)^{n-1} argument given earlier.
(defthm binomial-theorem-induction-lemma
(implies (and (integerp n) (< 0 n))
(equal (+ (* x (sumlist (binomial-expansion x y 0 (1- n))))
(* y (sumlist (binomial-expansion x y 0 (1- n)))))
(sumlist (binomial-expansion x y 0 n))))
:hints (("Goal"
:in-theory (disable expt))))
;; It's easier to reason about the following function than about the
;; real expt function -- take a look at the definition of expt to see
;; what we mean!
(defun n-expt (x n)
(declare (xargs :guard (and (acl2-numberp x) (integerp n) (<= n 0))))
(if (and (integerp n) (< 0 n))
(* x (n-expt x (1- n)))
1))
;; This little theorem is pretty useful below. I'm not sure why it
;; isn't a standard theorem of ACL2, but there's probably a subtle
;; reason involving cyclic rules....
(local
(defthm distributivity-2
(equal (* (+ x y) z)
(+ (* x z) (* y z)))))
;; Now, we're almost there. We prove the binomial theorem, but using
;; the function n-expt instead of expt -- we told you it was easier to
;; reason about!
(defthm binomial-theorem-fake
(implies (and (integerp n) (<= 0 n))
(equal (n-expt (+ x y) n)
(sumlist (binomial-expansion x y 0 n))))
:hints (("Goal" :induct (n-expt x n))
("Subgoal *1/1'" :in-theory (disable binomial-expansion))
("Subgoal *1/1'''" :by (:instance binomial-theorem-induction-lemma))))
;; For the big step, we now show that our definition of expt really is
;; the same as expt.
(defthm n-expt-expt
(implies (and (integerp n) (<= 0 n))
(equal (expt x n)
(n-expt x n))))
;; And therefore, we can now prove the binomial theorem!
(defthm binomial-theorem
(implies (and (integerp n) (<= 0 n))
(equal (expt (+ x y) n)
(sumlist
(binomial-expansion x y 0 n)))))
;; Here's an added bonus. It's not obvious that the binomial
;; expansions of (x+y)^n and (y+x)^n are the same -- it's a deep
;; consequence of the fact that (choose k n) and (choose (- n k) n)
;; are the same. But, it's obvious if you look at just (x+y)^n
;; vs. (y+x)^n. So, we get the fact that the binomial expansions
;; commute x&y for free!
(defthm binomial-sum-commutes
(implies (and (integerp n) (<= 0 n))
(equal (sumlist (binomial-expansion x y 0 n))
(sumlist (binomial-expansion y x 0 n))))
:hints (("Goal"
:use ((:instance binomial-theorem)
(:instance binomial-theorem (x y) (y x)))
:in-theory (disable binomial-theorem)))
:rule-classes nil)
|