This file is indexed.

/usr/include/ufc.h is in ufc 2.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// This is UFC (Unified Form-assembly Code) v. 2.3.0.
// This code is released into the public domain.
//
// The FEniCS Project (http://www.fenicsproject.org/) 2006-2014.

#ifndef __UFC_H
#define __UFC_H

#define UFC_VERSION_MAJOR 2
#define UFC_VERSION_MINOR 3
#define UFC_VERSION_MAINTENANCE 0

#include <vector>
#include <cstddef>
#include <stdexcept>

#include <ufc_geometry.h>

const char UFC_VERSION[] = "2.3.0";

namespace ufc
{

  /// Valid cell shapes
  enum shape {interval, triangle, quadrilateral, tetrahedron, hexahedron};

  /// This class defines the interface for cell topology data.
  class cell_topology
  {
  public:

    /// Destructor
    virtual ~cell_topology() {}

    /// Return array of global entity indices for topological dimension d
    //virtual const std::size_t* entity_indices(std::size_t d) const;

  };

  /// This class defines the interface for cell geometry data.
  class cell_geometry
  {
  public:

    /// Destructor
    virtual ~cell_geometry() {}

    /// Get vertex coordinates
    //virtual void get_vertex_coordinates(const double* x[]) const;

    //virtual std::vector<std::vector<double> >& void vertex_coordinates() const;

  };

  /// This class defines the data structure for a cell in a mesh.

  class cell
  {
  public:

    /// Constructor
    cell(): cell_shape(interval),
            topological_dimension(0), geometric_dimension(0),
            index(0), local_facet(-1), mesh_identifier(-1) {}

    /// Destructor
    virtual ~cell() {}

    /// Shape of the cell
    shape cell_shape;

    /// Topological dimension of the mesh
    std::size_t topological_dimension;

    /// Geometric dimension of the mesh
    std::size_t geometric_dimension;

    /// Array of global indices for the mesh entities of the cell
    std::vector<std::vector<std::size_t> > entity_indices;

    /// Cell index (short-cut for entity_indices[topological_dimension][0])
    std::size_t index;

    /// Local facet index
    int local_facet;

    /// Cell orientation
    int orientation;

    /// Unique mesh identifier
    int mesh_identifier;

  };

  /// This class defines the interface for a general tensor-valued function.

  class function
  {
  public:

    /// Destructor
    virtual ~function() {}

    /// Evaluate function at given point in cell
    virtual void evaluate(double* values,
                          const double* coordinates,
                          const cell& c) const = 0;

  };

  /// This class defines the interface for a finite element.

  class finite_element
  {
  public:

    /// Destructor
    virtual ~finite_element() {}

    /// Return a string identifying the finite element
    virtual const char* signature() const = 0;

    /// Return the cell shape
    virtual shape cell_shape() const = 0;

    /// Return the topological dimension of the cell shape
    virtual std::size_t topological_dimension() const = 0;

    /// Return the geometric dimension of the cell shape
    virtual std::size_t geometric_dimension() const = 0;

    /// Return the dimension of the finite element function space
    virtual std::size_t space_dimension() const = 0;

    /// Return the rank of the value space
    virtual std::size_t value_rank() const = 0;

    /// Return the dimension of the value space for axis i
    virtual std::size_t value_dimension(std::size_t i) const = 0;

    /// Evaluate basis function i at given point x in cell
    virtual void evaluate_basis(std::size_t i,
                                double* values,
                                const double* x,
                                const double* vertex_coordinates,
                                int cell_orientation) const = 0;

    /// Evaluate all basis functions at given point x in cell
    virtual void evaluate_basis_all(double* values,
                                    const double* x,
                                    const double* vertex_coordinates,
                                    int cell_orientation) const = 0;

    /// Evaluate order n derivatives of basis function i at given point x in cell
    virtual void evaluate_basis_derivatives(std::size_t i,
                                            std::size_t n,
                                            double* values,
                                            const double* x,
                                            const double* vertex_coordinates,
                                            int cell_orientation) const = 0;

    /// Evaluate order n derivatives of all basis functions at given point x in cell
    virtual void evaluate_basis_derivatives_all(std::size_t n,
                                                double* values,
                                                const double* x,
                                                const double* vertex_coordinates,
                                                int cell_orientation) const = 0;

    // FIXME: cell argument only included here so we can pass it to the eval function...

    /// Evaluate linear functional for dof i on the function f
    virtual double evaluate_dof(std::size_t i,
                                const function& f,
                                const double* vertex_coordinates,
                                int cell_orientation,
                                const cell& c) const = 0;

    /// Evaluate linear functionals for all dofs on the function f
    virtual void evaluate_dofs(double* values,
                               const function& f,
                               const double* vertex_coordinates,
                               int cell_orientation,
                               const cell& c) const = 0;

    /// Interpolate vertex values from dof values
    virtual void interpolate_vertex_values(double* vertex_values,
                                           const double* dof_values,
                                           const double* vertex_coordinates,
                                           int cell_orientation,
                                           const cell& c) const = 0;

    /// Map coordinate xhat from reference cell to coordinate x in cell
    virtual void map_from_reference_cell(double* x,
                                         const double* xhat,
                                         const cell& c) const = 0;

    /// Map from coordinate x in cell to coordinate xhat in reference cell
    virtual void map_to_reference_cell(double* xhat,
                                       const double* x,
                                       const cell& c) const = 0;

    /// Return the number of sub elements (for a mixed element)
    virtual std::size_t num_sub_elements() const = 0;

    /// Create a new finite element for sub element i (for a mixed element)
    virtual finite_element* create_sub_element(std::size_t i) const = 0;

    /// Create a new class instance
    virtual finite_element* create() const = 0;

  };

  /// This class defines the interface for a local-to-global mapping of
  /// degrees of freedom (dofs).

  class dofmap
  {
  public:

    /// Destructor
    virtual ~dofmap() {}

    /// Return a string identifying the dofmap
    virtual const char* signature() const = 0;

    /// Return true iff mesh entities of topological dimension d are
    /// needed
    virtual bool needs_mesh_entities(std::size_t d) const = 0;

    /// Return the topological dimension of the associated cell shape
    virtual std::size_t topological_dimension() const = 0;

    /// Return the geometric dimension of the associated cell shape
    virtual std::size_t geometric_dimension() const = 0;

    /// Return the dimension of the global finite element function space
    virtual std::size_t global_dimension(const std::vector<std::size_t>&
                                         num_global_mesh_entities) const = 0;

    /// Return the dimension of the local finite element function space
    /// for a cell
    virtual std::size_t local_dimension() const = 0;

    /// Return the number of dofs on each cell facet
    virtual std::size_t num_facet_dofs() const = 0;

    /// Return the number of dofs associated with each cell entity of
    /// dimension d
    virtual std::size_t num_entity_dofs(std::size_t d) const = 0;

    /// Tabulate the local-to-global mapping of dofs on a cell
    virtual void tabulate_dofs(std::size_t* dofs,
                               const std::vector<std::size_t>& num_global_entities,
                               const cell& c) const = 0;

    /// Tabulate the local-to-local mapping from facet dofs to cell dofs
    virtual void tabulate_facet_dofs(std::size_t* dofs,
                                     std::size_t facet) const = 0;

    /// Tabulate the local-to-local mapping of dofs on entity (d, i)
    virtual void tabulate_entity_dofs(std::size_t* dofs,
                                      std::size_t d, std::size_t i) const = 0;

    /// Tabulate the coordinates of all dofs on a cell
    virtual void tabulate_coordinates(double** dof_coordinates,
                                      const double* vertex_coordinates) const = 0;

    /// Return the number of sub dofmaps (for a mixed element)
    virtual std::size_t num_sub_dofmaps() const = 0;

    /// Create a new dofmap for sub dofmap i (for a mixed element)
    virtual dofmap* create_sub_dofmap(std::size_t i) const = 0;

    /// Create a new class instance
    virtual dofmap* create() const = 0;

  };

  /// This class defines the interface for the tabulation of the cell
  /// tensor corresponding to the local contribution to a form from
  /// the integral over a cell.

  class cell_integral
  {
  public:

    /// Destructor
    virtual ~cell_integral() {}

    /// Tabulate the tensor for the contribution from a local cell
    virtual void tabulate_tensor(double* A,
                                 const double * const * w,
                                 const double* vertex_coordinates,
                                 int cell_orientation) const = 0;

    // FIXME: New experimental version
    /// Tabulate the tensor for the contribution from a local cell
    virtual void tabulate_tensor_new(double* A,
                                     const double * const * w,
                                     const cell_geometry& c) const {}

  };

  /// This class defines the interface for the tabulation of the
  /// exterior facet tensor corresponding to the local contribution to
  /// a form from the integral over an exterior facet.

  class exterior_facet_integral
  {
  public:

    /// Destructor
    virtual ~exterior_facet_integral() {}

    /// Tabulate the tensor for the contribution from a local exterior facet
    virtual void tabulate_tensor(double* A,
                                 const double * const * w,
                                 const double* vertex_coordinates,
                                 std::size_t facet) const = 0;

  };

  /// This class defines the interface for the tabulation of the
  /// interior facet tensor corresponding to the local contribution to
  /// a form from the integral over an interior facet.

  class interior_facet_integral
  {
  public:

    /// Destructor
    virtual ~interior_facet_integral() {}

    /// Tabulate the tensor for the contribution from a local interior facet
    virtual void tabulate_tensor(double* A,
                                 const double * const * w,
                                 const double* vertex_coordinates_0,
                                 const double* vertex_coordinates_1,
                                 std::size_t facet_0,
                                 std::size_t facet_1) const = 0;

  };

  /// This class defines the interface for the tabulation of
  /// an expression evaluated at exactly one point.

  class point_integral
  {
  public:

    /// Constructor
    point_integral() {}

    /// Destructor
    virtual ~point_integral() {}

    /// Tabulate the tensor for the contribution from the local vertex
    virtual void tabulate_tensor(double* A,
                                 const double * const * w,
                                 const double* vertex_coordinates,
                                 std::size_t vertex) const = 0;

  };

  /// This class defines the interface for the assembly of the global
  /// tensor corresponding to a form with r + n arguments, that is, a
  /// mapping
  ///
  ///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
  ///
  /// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
  /// global tensor A is defined by
  ///
  ///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
  ///
  /// where each argument Vj represents the application to the
  /// sequence of basis functions of Vj and w1, w2, ..., wn are given
  /// fixed functions (coefficients).

  class form
  {
  public:

    /// Destructor
    virtual ~form() {}

    /// Return a string identifying the form
    virtual const char* signature() const = 0;

    /// Return the rank of the global tensor (r)
    virtual std::size_t rank() const = 0;

    /// Return the number of coefficients (n)
    virtual std::size_t num_coefficients() const = 0;

    /// Return the number of cell domains
    virtual std::size_t num_cell_domains() const = 0;

    /// Return the number of exterior facet domains
    virtual std::size_t num_exterior_facet_domains() const = 0;

    /// Return the number of interior facet domains
    virtual std::size_t num_interior_facet_domains() const = 0;

    /// Return the number of point domains
    virtual std::size_t num_point_domains() const = 0;

    /// Return whether form has any cell integrals
    virtual bool has_cell_integrals() const = 0;

    /// Return whether form has any exterior facet integrals
    virtual bool has_exterior_facet_integrals() const = 0;

    /// Return whether form has any interior facet integrals
    virtual bool has_interior_facet_integrals() const = 0;

    /// Return whether form has any point integrals
    virtual bool has_point_integrals() const = 0;

    /// Create a new finite element for argument function i
    virtual finite_element* create_finite_element(std::size_t i) const = 0;

    /// Create a new dofmap for argument function i
    virtual dofmap* create_dofmap(std::size_t i) const = 0;

    /// Create a new cell integral on sub domain i
    virtual cell_integral* create_cell_integral(std::size_t i) const = 0;

    /// Create a new exterior facet integral on sub domain i
    virtual exterior_facet_integral*
    create_exterior_facet_integral(std::size_t i) const = 0;

    /// Create a new interior facet integral on sub domain i
    virtual interior_facet_integral*
    create_interior_facet_integral(std::size_t i) const = 0;

    /// Create a new point integral on sub domain i
    virtual point_integral* create_point_integral(std::size_t i) const = 0;

    /// Create a new cell integral on everywhere else
    virtual cell_integral* create_default_cell_integral() const = 0;

    /// Create a new exterior facet integral on everywhere else
    virtual exterior_facet_integral*
    create_default_exterior_facet_integral() const = 0;

    /// Create a new interior facet integral on everywhere else
    virtual interior_facet_integral*
    create_default_interior_facet_integral() const = 0;

    /// Create a new point integral on everywhere else
    virtual point_integral* create_default_point_integral() const = 0;

  };

}

#endif