/usr/include/thunderbird/nsTArray.h is in thunderbird-dev 1:52.8.0-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsTArray_h__
#define nsTArray_h__
#include "nsTArrayForwardDeclare.h"
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/fallible.h"
#include "mozilla/Function.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/ReverseIterator.h"
#include "mozilla/TypeTraits.h"
#include <string.h>
#include "nsCycleCollectionNoteChild.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsISupportsImpl.h"
#include "nsRegionFwd.h"
#include <initializer_list>
#include <new>
namespace JS {
template<class T>
class Heap;
class ObjectPtr;
} /* namespace JS */
class nsRegion;
namespace mozilla {
namespace layers {
struct TileClient;
} // namespace layers
} // namespace mozilla
namespace mozilla {
struct SerializedStructuredCloneBuffer;
} // namespace mozilla
namespace mozilla {
namespace dom {
namespace ipc {
class StructuredCloneData;
} // namespace ipc
} // namespace dom
} // namespace mozilla
namespace mozilla {
namespace dom {
class ClonedMessageData;
class MessagePortMessage;
namespace indexedDB {
struct StructuredCloneReadInfo;
class SerializedStructuredCloneReadInfo;
class ObjectStoreCursorResponse;
} // namespace indexedDB
} // namespace dom
} // namespace mozilla
class JSStructuredCloneData;
//
// nsTArray is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// nsTArray assumes that your "T" can be memmoved()'ed safely.
//
// The public classes defined in this header are
//
// nsTArray<T>,
// FallibleTArray<T>,
// AutoTArray<T, N>, and
//
// nsTArray and AutoTArray are infallible by default. To opt-in to fallible
// behaviour, use the `mozilla::fallible` parameter and check the return value.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
// elements and has the following requirements:
//
// T MUST be safely memmove()'able.
// T MUST define a copy-constructor.
// T MAY define operator< for sorting.
// T MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_CopyChooser below.)
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
// class Comparator {
// public:
// /** @return True if the elements are equals; false otherwise. */
// bool Equals(const elem_type& a, const Item& b) const;
//
// /** @return True if (a < b); false otherwise. */
// bool LessThan(const elem_type& a, const Item& b) const;
// };
//
// The Equals method is used for searching, and the LessThan method is used for
// searching and sorting. The |Item| type above can be arbitrary, but must
// match the Item type passed to the sort or search function.
//
//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function. In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type. Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult
{
// Note: allows implicit conversions from and to bool
MOZ_IMPLICIT nsTArrayFallibleResult(bool aResult) : mResult(aResult) {}
MOZ_IMPLICIT operator bool() { return mResult; }
private:
bool mResult;
};
struct nsTArrayInfallibleResult
{
};
//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//
struct nsTArrayFallibleAllocatorBase
{
typedef bool ResultType;
typedef nsTArrayFallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy aResult) { return aResult; }
static bool Successful(ResultTypeProxy aResult) { return aResult; }
static ResultTypeProxy SuccessResult() { return true; }
static ResultTypeProxy FailureResult() { return false; }
static ResultType ConvertBoolToResultType(bool aValue) { return aValue; }
};
struct nsTArrayInfallibleAllocatorBase
{
typedef void ResultType;
typedef nsTArrayInfallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy aResult) {}
static bool Successful(ResultTypeProxy) { return true; }
static ResultTypeProxy SuccessResult() { return ResultTypeProxy(); }
static ResultTypeProxy FailureResult()
{
NS_RUNTIMEABORT("Infallible nsTArray should never fail");
return ResultTypeProxy();
}
static ResultType ConvertBoolToResultType(bool aValue)
{
if (!aValue) {
NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
}
}
};
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t aSize) { return malloc(aSize); }
static void* Realloc(void* aPtr, size_t aSize)
{
return realloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t) {}
};
#if defined(MOZALLOC_HAVE_XMALLOC)
#include "mozilla/mozalloc_abort.h"
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t aSize) { return moz_xmalloc(aSize); }
static void* Realloc(void* aPtr, size_t aSize)
{
return moz_xrealloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};
#else
#include <stdlib.h>
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t aSize)
{
void* ptr = malloc(aSize);
if (MOZ_UNLIKELY(!ptr)) {
NS_ABORT_OOM(aSize);
}
return ptr;
}
static void* Realloc(void* aPtr, size_t aSize)
{
void* newptr = realloc(aPtr, aSize);
if (MOZ_UNLIKELY(!newptr && aSize)) {
NS_ABORT_OOM(aSize);
}
return newptr;
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};
#endif
// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this). This is done to minimize the size of the nsTArray
// object when it is empty.
struct nsTArrayHeader
{
static nsTArrayHeader sEmptyHdr;
uint32_t mLength;
uint32_t mCapacity : 31;
uint32_t mIsAutoArray : 1;
};
// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
typedef E* elem_type;
typedef size_t index_type;
// No implementation is provided for these two methods, and that is on
// purpose, since we don't support these functions on non-pointer type
// instantiations.
elem_type& SafeElementAt(index_type aIndex);
const elem_type& SafeElementAt(index_type aIndex) const;
};
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
typedef E* elem_type;
//typedef const E* const_elem_type; XXX: see below
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
// Also, the use of const_elem_type for nsTArray<xpcGCCallback> in
// xpcprivate.h causes build failures on Windows because xpcGCCallback is a
// function pointer and MSVC doesn't like qualifying it with |const|.
elem_type SafeElementAt(index_type aIndex) const
{
return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
};
// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template<class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
typedef E* elem_type;
typedef const E* const_elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
elem_type SafeElementAt(index_type aIndex) const
{
return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
};
template<class T> class nsCOMPtr;
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<RefPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
namespace mozilla {
template<class T> class OwningNonNull;
} // namespace mozilla
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<mozilla::OwningNonNull<E>, Derived>
{
typedef E* elem_type;
typedef const E* const_elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
if (aIndex < static_cast<Derived*>(this)->Length()) {
return static_cast<Derived*>(this)->ElementAt(aIndex);
}
return nullptr;
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
elem_type SafeElementAt(index_type aIndex) const
{
if (aIndex < static_cast<const Derived*>(this)->Length()) {
return static_cast<const Derived*>(this)->ElementAt(aIndex);
}
return nullptr;
}
};
// Servo bindings.
extern "C" void Gecko_EnsureTArrayCapacity(void* aArray,
size_t aCapacity,
size_t aElementSize);
extern "C" void Gecko_ClearPODTArray(void* aArray,
size_t aElementSize,
size_t aElementAlign);
MOZ_NORETURN MOZ_COLD void
InvalidArrayIndex_CRASH(size_t aIndex, size_t aLength);
//
// This class serves as a base class for nsTArray. It shouldn't be used
// directly. It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc, class Copy>
class nsTArray_base
{
// Allow swapping elements with |nsTArray_base|s created using a
// different allocator. This is kosher because all allocators use
// the same free().
template<class Allocator, class Copier>
friend class nsTArray_base;
friend void Gecko_EnsureTArrayCapacity(void* aArray, size_t aCapacity,
size_t aElemSize);
friend void Gecko_ClearPODTArray(void* aTArray, size_t aElementSize,
size_t aElementAlign);
protected:
typedef nsTArrayHeader Header;
public:
typedef size_t size_type;
typedef size_t index_type;
// @return The number of elements in the array.
size_type Length() const { return mHdr->mLength; }
// @return True if the array is empty or false otherwise.
bool IsEmpty() const { return Length() == 0; }
// @return The number of elements that can fit in the array without forcing
// the array to be re-allocated. The length of an array is always less
// than or equal to its capacity.
size_type Capacity() const { return mHdr->mCapacity; }
#ifdef DEBUG
void* DebugGetHeader() const { return mHdr; }
#endif
protected:
nsTArray_base();
~nsTArray_base();
// Resize the storage if necessary to achieve the requested capacity.
// @param aCapacity The requested number of array elements.
// @param aElemSize The size of an array element.
// @return False if insufficient memory is available; true otherwise.
template<typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy EnsureCapacity(size_type aCapacity,
size_type aElemSize);
// Tries to resize the storage to the minimum required amount. If this fails,
// the array is left as-is.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
void ShrinkCapacity(size_type aElemSize, size_t aElemAlign);
// This method may be called to resize a "gap" in the array by shifting
// elements around. It updates mLength appropriately. If the resulting
// array has zero elements, then the array's memory is free'd.
// @param aStart The starting index of the gap.
// @param aOldLen The current length of the gap.
// @param aNewLen The desired length of the gap.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
template<typename ActualAlloc>
void ShiftData(index_type aStart, size_type aOldLen, size_type aNewLen,
size_type aElemSize, size_t aElemAlign);
// This method increments the length member of the array's header.
// Note that mHdr may actually be sEmptyHdr in the case where a
// zero-length array is inserted into our array. But then aNum should
// always be 0.
void IncrementLength(size_t aNum)
{
if (mHdr == EmptyHdr()) {
if (MOZ_UNLIKELY(aNum != 0)) {
// Writing a non-zero length to the empty header would be extremely bad.
MOZ_CRASH();
}
} else {
mHdr->mLength += aNum;
}
}
// This method inserts blank slots into the array.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of slots to insert
// @param aElementSize the size of an array element.
// @param aElemAlign the alignment in bytes of an array element.
template<typename ActualAlloc>
bool InsertSlotsAt(index_type aIndex, size_type aCount,
size_type aElementSize, size_t aElemAlign);
template<typename ActualAlloc, class Allocator>
typename ActualAlloc::ResultTypeProxy
SwapArrayElements(nsTArray_base<Allocator, Copy>& aOther,
size_type aElemSize,
size_t aElemAlign);
// This is an RAII class used in SwapArrayElements.
class IsAutoArrayRestorer
{
public:
IsAutoArrayRestorer(nsTArray_base<Alloc, Copy>& aArray, size_t aElemAlign);
~IsAutoArrayRestorer();
private:
nsTArray_base<Alloc, Copy>& mArray;
size_t mElemAlign;
bool mIsAuto;
};
// Helper function for SwapArrayElements. Ensures that if the array
// is an AutoTArray that it doesn't use the built-in buffer.
template<typename ActualAlloc>
bool EnsureNotUsingAutoArrayBuffer(size_type aElemSize);
// Returns true if this nsTArray is an AutoTArray with a built-in buffer.
bool IsAutoArray() const { return mHdr->mIsAutoArray; }
// Returns a Header for the built-in buffer of this AutoTArray.
Header* GetAutoArrayBuffer(size_t aElemAlign)
{
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
const Header* GetAutoArrayBuffer(size_t aElemAlign) const
{
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
// Returns a Header for the built-in buffer of this AutoTArray, but doesn't
// assert that we are an AutoTArray.
Header* GetAutoArrayBufferUnsafe(size_t aElemAlign)
{
return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(
this)->GetAutoArrayBufferUnsafe(aElemAlign));
}
const Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) const;
// Returns true if this is an AutoTArray and it currently uses the
// built-in buffer to store its elements.
bool UsesAutoArrayBuffer() const;
// The array's elements (prefixed with a Header). This pointer is never
// null. If the array is empty, then this will point to sEmptyHdr.
Header* mHdr;
Header* Hdr() const { return mHdr; }
Header** PtrToHdr() { return &mHdr; }
static Header* EmptyHdr() { return &Header::sEmptyHdr; }
};
//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
// Invoke the default constructor in place.
static inline void Construct(E* aE)
{
// Do NOT call "E()"! That triggers C++ "default initialization"
// which zeroes out POD ("plain old data") types such as regular
// ints. We don't want that because it can be a performance issue
// and people don't expect it; nsTArray should work like a regular
// C/C++ array in this respect.
new (static_cast<void*>(aE)) E;
}
// Invoke the copy-constructor in place.
template<class A>
static inline void Construct(E* aE, A&& aArg)
{
typedef typename mozilla::RemoveCV<E>::Type E_NoCV;
typedef typename mozilla::RemoveCV<A>::Type A_NoCV;
static_assert(!mozilla::IsSame<E_NoCV*, A_NoCV>::value,
"For safety, we disallow constructing nsTArray<E> elements "
"from E* pointers. See bug 960591.");
new (static_cast<void*>(aE)) E(mozilla::Forward<A>(aArg));
}
// Invoke the destructor in place.
static inline void Destruct(E* aE) { aE->~E(); }
};
// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
bool Equals(const A& aA, const B& aB) const { return aA == aB; }
bool LessThan(const A& aA, const B& aB) const { return aA < aB; }
};
template<bool IsPod, bool IsSameType>
struct AssignRangeAlgorithm
{
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues)
{
ElemType* iter = aElements + aStart;
ElemType* end = iter + aCount;
for (; iter != end; ++iter, ++aValues) {
nsTArrayElementTraits<ElemType>::Construct(iter, *aValues);
}
}
};
template<>
struct AssignRangeAlgorithm<true, true>
{
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues)
{
memcpy(aElements + aStart, aValues, aCount * sizeof(ElemType));
}
};
//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic. The nsTArray_CopyChooser template class can be
// specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//
//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_CopyWithMemutils
{
const static bool allowRealloc = true;
static void MoveNonOverlappingRegionWithHeader(void* aDest, const void* aSrc,
size_t aCount, size_t aElemSize)
{
memcpy(aDest, aSrc, sizeof(nsTArrayHeader) + aCount * aElemSize);
}
static void MoveOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
memmove(aDest, aSrc, aCount * aElemSize);
}
static void MoveNonOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
memcpy(aDest, aSrc, aCount * aElemSize);
}
};
//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template<class ElemType>
struct nsTArray_CopyWithConstructors
{
typedef nsTArrayElementTraits<ElemType> traits;
const static bool allowRealloc = false;
static void MoveNonOverlappingRegionWithHeader(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(aDest);
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(aSrc);
*destHeader = *srcHeader;
MoveNonOverlappingRegion(static_cast<uint8_t*>(aDest) + sizeof(nsTArrayHeader),
static_cast<uint8_t*>(aSrc) + sizeof(nsTArrayHeader),
aCount, aElemSize);
}
// These functions are defined by analogy with memmove and memcpy.
// What they actually do is slightly different: MoveOverlappingRegion
// checks to see which direction the movement needs to take place,
// whether from back-to-front of the range to be moved or from
// front-to-back. MoveNonOverlappingRegion assumes that moving
// front-to-back is always valid. So they're really more like
// std::move{_backward,} in that respect. We keep these names because
// we think they read slightly better, and MoveNonOverlappingRegion is
// only ever called on overlapping regions from MoveOverlappingRegion.
static void MoveOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
ElemType* destElem = static_cast<ElemType*>(aDest);
ElemType* srcElem = static_cast<ElemType*>(aSrc);
ElemType* destElemEnd = destElem + aCount;
ElemType* srcElemEnd = srcElem + aCount;
if (destElem == srcElem) {
return; // In practice, we don't do this.
}
// Figure out whether to copy back-to-front or front-to-back.
if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
while (destElemEnd != destElem) {
--destElemEnd;
--srcElemEnd;
traits::Construct(destElemEnd, mozilla::Move(*srcElemEnd));
traits::Destruct(srcElemEnd);
}
} else {
MoveNonOverlappingRegion(aDest, aSrc, aCount, aElemSize);
}
}
static void MoveNonOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
ElemType* destElem = static_cast<ElemType*>(aDest);
ElemType* srcElem = static_cast<ElemType*>(aSrc);
ElemType* destElemEnd = destElem + aCount;
#ifdef DEBUG
ElemType* srcElemEnd = srcElem + aCount;
MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
while (destElem != destElemEnd) {
traits::Construct(destElem, mozilla::Move(*srcElem));
traits::Destruct(srcElem);
++destElem;
++srcElem;
}
}
};
//
// The default behaviour is to use memcpy/memmove for everything.
//
template<class E>
struct MOZ_NEEDS_MEMMOVABLE_TYPE nsTArray_CopyChooser
{
using Type = nsTArray_CopyWithMemutils;
};
//
// Some classes require constructors/destructors to be called, so they are
// specialized here.
//
#define DECLARE_USE_COPY_CONSTRUCTORS(T) \
template<> \
struct nsTArray_CopyChooser<T> \
{ \
using Type = nsTArray_CopyWithConstructors<T>; \
};
#define DECLARE_USE_COPY_CONSTRUCTORS_FOR_TEMPLATE(T) \
template<typename S> \
struct nsTArray_CopyChooser<T<S>> \
{ \
using Type = nsTArray_CopyWithConstructors<T<S>>; \
};
DECLARE_USE_COPY_CONSTRUCTORS_FOR_TEMPLATE(JS::Heap)
DECLARE_USE_COPY_CONSTRUCTORS(nsRegion)
DECLARE_USE_COPY_CONSTRUCTORS(nsIntRegion)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::layers::TileClient)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::SerializedStructuredCloneBuffer)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::ipc::StructuredCloneData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::ClonedMessageData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::StructuredCloneReadInfo);
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::ObjectStoreCursorResponse)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::SerializedStructuredCloneReadInfo);
DECLARE_USE_COPY_CONSTRUCTORS(JSStructuredCloneData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::MessagePortMessage)
DECLARE_USE_COPY_CONSTRUCTORS(JS::ObjectPtr)
//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template<class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived>
{
};
//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template<class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
{
operator const nsTArray<E>&()
{
static_assert(sizeof(E) == sizeof(JS::Heap<E>),
"JS::Heap<E> must be binary compatible with E.");
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<nsTArray<E> *>(self);
}
operator const FallibleTArray<E>&()
{
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<FallibleTArray<E> *>(self);
}
};
namespace detail {
template<class Item, class Comparator>
struct ItemComparatorEq
{
const Item& mItem;
const Comparator& mComp;
ItemComparatorEq(const Item& aItem, const Comparator& aComp)
: mItem(aItem)
, mComp(aComp)
{}
template<class T>
int operator()(const T& aElement) const {
if (mComp.Equals(aElement, mItem)) {
return 0;
}
return mComp.LessThan(aElement, mItem) ? 1 : -1;
}
};
template<class Item, class Comparator>
struct ItemComparatorFirstElementGT
{
const Item& mItem;
const Comparator& mComp;
ItemComparatorFirstElementGT(const Item& aItem, const Comparator& aComp)
: mItem(aItem)
, mComp(aComp)
{}
template<class T>
int operator()(const T& aElement) const {
if (mComp.LessThan(aElement, mItem) ||
mComp.Equals(aElement, mItem)) {
return 1;
} else {
return -1;
}
}
};
} // namespace detail
//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// AutoTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template<class E, class Alloc>
class nsTArray_Impl
: public nsTArray_base<Alloc, typename nsTArray_CopyChooser<E>::Type>
, public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc>>
{
private:
typedef nsTArrayFallibleAllocator FallibleAlloc;
typedef nsTArrayInfallibleAllocator InfallibleAlloc;
public:
typedef typename nsTArray_CopyChooser<E>::Type copy_type;
typedef nsTArray_base<Alloc, copy_type> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::index_type index_type;
typedef E elem_type;
typedef nsTArray_Impl<E, Alloc> self_type;
typedef nsTArrayElementTraits<E> elem_traits;
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
typedef elem_type* iterator;
typedef const elem_type* const_iterator;
typedef mozilla::ReverseIterator<elem_type*> reverse_iterator;
typedef mozilla::ReverseIterator<const elem_type*> const_reverse_iterator;
using safeelementat_helper_type::SafeElementAt;
using base_type::EmptyHdr;
// A special value that is used to indicate an invalid or unknown index
// into the array.
static const index_type NoIndex = index_type(-1);
using base_type::Length;
//
// Finalization method
//
~nsTArray_Impl() { Clear(); }
//
// Initialization methods
//
nsTArray_Impl() {}
// Initialize this array and pre-allocate some number of elements.
explicit nsTArray_Impl(size_type aCapacity) { SetCapacity(aCapacity); }
// Initialize this array with an r-value.
// Allow different types of allocators, since the allocator doesn't matter.
template<typename Allocator>
explicit nsTArray_Impl(nsTArray_Impl<E, Allocator>&& aOther)
{
SwapElements(aOther);
}
// The array's copy-constructor performs a 'deep' copy of the given array.
// @param aOther The array object to copy.
//
// It's very important that we declare this method as taking |const
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
// an arbitrary OtherAlloc.
//
// If we don't declare a constructor taking |const self_type&|, C++ generates
// a copy-constructor for this class which merely copies the object's
// members, which is obviously wrong.
//
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
// effect on the API is the same as if we'd declared this method as taking
// |const nsTArray_Impl<E, OtherAlloc>&|.
explicit nsTArray_Impl(const self_type& aOther) { AppendElements(aOther); }
explicit nsTArray_Impl(std::initializer_list<E> aIL) { AppendElements(aIL.begin(), aIL.size()); }
// Allow converting to a const array with a different kind of allocator,
// Since the allocator doesn't matter for const arrays
template<typename Allocator>
operator const nsTArray_Impl<E, Allocator>&() const
{
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
}
// And we have to do this for our subclasses too
operator const nsTArray<E>&() const
{
return *reinterpret_cast<const InfallibleTArray<E>*>(this);
}
operator const FallibleTArray<E>&() const
{
return *reinterpret_cast<const FallibleTArray<E>*>(this);
}
// The array's assignment operator performs a 'deep' copy of the given
// array. It is optimized to reuse existing storage if possible.
// @param aOther The array object to copy.
self_type& operator=(const self_type& aOther)
{
if (this != &aOther) {
ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length());
}
return *this;
}
// The array's move assignment operator steals the underlying data from
// the other array.
// @param other The array object to move from.
self_type& operator=(self_type&& aOther)
{
if (this != &aOther) {
Clear();
SwapElements(aOther);
}
return *this;
}
// Return true if this array has the same length and the same
// elements as |aOther|.
template<typename Allocator>
bool operator==(const nsTArray_Impl<E, Allocator>& aOther) const
{
size_type len = Length();
if (len != aOther.Length()) {
return false;
}
// XXX std::equal would be as fast or faster here
for (index_type i = 0; i < len; ++i) {
if (!(operator[](i) == aOther[i])) {
return false;
}
}
return true;
}
// Return true if this array does not have the same length and the same
// elements as |aOther|.
bool operator!=(const self_type& aOther) const { return !operator==(aOther); }
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length());
return *this;
}
template<typename Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
Clear();
SwapElements(aOther);
return *this;
}
// @return The amount of memory used by this nsTArray_Impl, excluding
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr()) {
return 0;
}
return aMallocSizeOf(this->Hdr());
}
// @return The amount of memory used by this nsTArray_Impl, including
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
}
//
// Accessor methods
//
// This method provides direct access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
elem_type* Elements() { return reinterpret_cast<elem_type*>(Hdr() + 1); }
// This method provides direct, readonly access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
const elem_type* Elements() const
{
return reinterpret_cast<const elem_type*>(Hdr() + 1);
}
// This method provides direct access to an element of the array. The given
// index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A reference to the i'th element of the array.
elem_type& ElementAt(index_type aIndex)
{
if (MOZ_UNLIKELY(aIndex >= Length())) {
InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct, readonly access to an element of the array
// The given index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A const reference to the i'th element of the array.
const elem_type& ElementAt(index_type aIndex) const
{
if (MOZ_UNLIKELY(aIndex >= Length())) {
InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
elem_type& SafeElementAt(index_type aIndex, elem_type& aDef)
{
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
const elem_type& SafeElementAt(index_type aIndex, const elem_type& aDef) const
{
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// Shorthand for ElementAt(aIndex)
elem_type& operator[](index_type aIndex) { return ElementAt(aIndex); }
// Shorthand for ElementAt(aIndex)
const elem_type& operator[](index_type aIndex) const { return ElementAt(aIndex); }
// Shorthand for ElementAt(length - 1)
elem_type& LastElement() { return ElementAt(Length() - 1); }
// Shorthand for ElementAt(length - 1)
const elem_type& LastElement() const { return ElementAt(Length() - 1); }
// Shorthand for SafeElementAt(length - 1, def)
elem_type& SafeLastElement(elem_type& aDef)
{
return SafeElementAt(Length() - 1, aDef);
}
// Shorthand for SafeElementAt(length - 1, def)
const elem_type& SafeLastElement(const elem_type& aDef) const
{
return SafeElementAt(Length() - 1, aDef);
}
// Methods for range-based for loops.
iterator begin() { return Elements(); }
const_iterator begin() const { return Elements(); }
const_iterator cbegin() const { return begin(); }
iterator end() { return Elements() + Length(); }
const_iterator end() const { return Elements() + Length(); }
const_iterator cend() const { return end(); }
// Methods for reverse iterating.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator crbegin() const { return rbegin(); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
const_reverse_iterator crend() const { return rend(); }
//
// Search methods
//
// This method searches for the first element in this array that is equal
// to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found.
template<class Item, class Comparator>
bool Contains(const Item& aItem, const Comparator& aComp) const
{
return IndexOf(aItem, 0, aComp) != NoIndex;
}
// This method searches for the first element in this array that is equal
// to the given element. This method assumes that 'operator==' is defined
// for elem_type.
// @param aItem The item to search for.
// @return true if the element was found.
template<class Item>
bool Contains(const Item& aItem) const
{
return IndexOf(aItem) != NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type IndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const
{
const elem_type* iter = Elements() + aStart;
const elem_type* iend = Elements() + Length();
for (; iter != iend; ++iter) {
if (aComp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type IndexOf(const Item& aItem, index_type aStart = 0) const
{
return IndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset of the last element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type LastIndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const
{
size_type endOffset = aStart >= Length() ? Length() : aStart + 1;
const elem_type* iend = Elements() - 1;
const elem_type* iter = iend + endOffset;
for (; iter != iend; --iter) {
if (aComp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the last element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type LastIndexOf(const Item& aItem,
index_type aStart = NoIndex) const
{
return LastIndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// If there is more than one equivalent element, there is no guarantee
// on which one will be returned.
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type BinaryIndexOf(const Item& aItem, const Comparator& aComp) const
{
using mozilla::BinarySearchIf;
typedef ::detail::ItemComparatorEq<Item, Comparator> Cmp;
size_t index;
bool found = BinarySearchIf(*this, 0, Length(), Cmp(aItem, aComp), &index);
return found ? index : NoIndex;
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// This method assumes that 'operator==' and 'operator<' are defined.
// @param aItem The item to search for.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type BinaryIndexOf(const Item& aItem) const
{
return BinaryIndexOf(aItem, nsDefaultComparator<elem_type, Item>());
}
//
// Mutation methods
//
template<class Allocator, typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType Assign(
const nsTArray_Impl<E, Allocator>& aOther)
{
return ActualAlloc::ConvertBoolToResultType(
!!ReplaceElementsAt<E, ActualAlloc>(0, Length(),
aOther.Elements(), aOther.Length()));
}
template<class Allocator>
MOZ_MUST_USE
bool Assign(const nsTArray_Impl<E, Allocator>& aOther,
const mozilla::fallible_t&)
{
return Assign<Allocator, FallibleAlloc>(aOther);
}
template<class Allocator>
void Assign(nsTArray_Impl<E, Allocator>&& aOther)
{
Clear();
SwapElements(aOther);
}
// This method call the destructor on each element of the array, empties it,
// but does not shrink the array's capacity.
// See also SetLengthAndRetainStorage.
// Make sure to call Compact() if needed to avoid keeping a huge array
// around.
void ClearAndRetainStorage()
{
if (base_type::mHdr == EmptyHdr()) {
return;
}
DestructRange(0, Length());
base_type::mHdr->mLength = 0;
}
// This method modifies the length of the array, but unlike SetLength
// it doesn't deallocate/reallocate the current internal storage.
// The new length MUST be shorter than or equal to the current capacity.
// If the new length is larger than the existing length of the array,
// then new elements will be constructed using elem_type's default
// constructor. If shorter, elements will be destructed and removed.
// See also ClearAndRetainStorage.
// @param aNewLen The desired length of this array.
void SetLengthAndRetainStorage(size_type aNewLen)
{
MOZ_ASSERT(aNewLen <= base_type::Capacity());
size_type oldLen = Length();
if (aNewLen > oldLen) {
InsertElementsAt(oldLen, aNewLen - oldLen);
return;
}
if (aNewLen < oldLen) {
DestructRange(aNewLen, oldLen - aNewLen);
base_type::mHdr->mLength = aNewLen;
}
}
// This method replaces a range of elements in this array.
// @param aStart The starting index of the elements to replace.
// @param aCount The number of elements to replace. This may be zero to
// insert elements without removing any existing elements.
// @param aArray The values to copy into this array. Must be non-null,
// and these elements must not already exist in the array
// being modified.
// @param aArrayLen The number of values to copy into this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen);
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen,
const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount,
aArray, aArrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const nsTArray<Item>& aArray)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aStart, aCount, aArray.Elements(), aArray.Length());
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const nsTArray<Item>& aArray,
const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount, aArray);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item& aItem)
{
return ReplaceElementsAt<Item, ActualAlloc>(aStart, aCount, &aItem, 1);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item& aItem, const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount, aItem);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type* ReplaceElementAt(index_type aIndex, const Item& aItem)
{
return ReplaceElementsAt(aIndex, 1, &aItem, 1);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, const Item* aArray,
size_type aArrayLen)
{
return ReplaceElementsAt<Item, ActualAlloc>(aIndex, 0, aArray, aArrayLen);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, const Item* aArray,
size_type aArrayLen, const mozilla::fallible_t&)
{
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aArray, aArrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex,
const nsTArray_Impl<Item, Allocator>& aArray)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aIndex, 0, aArray.Elements(), aArray.Length());
}
public:
template<class Item, class Allocator>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex,
const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&)
{
return InsertElementsAt<Item, Allocator, FallibleAlloc>(aIndex, aArray);
}
// Insert a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly inserted element, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* InsertElementAt(index_type aIndex);
public:
MOZ_MUST_USE
elem_type* InsertElementAt(index_type aIndex, const mozilla::fallible_t&)
{
return InsertElementAt<FallibleAlloc>(aIndex);
}
// Insert a new element, move constructing if possible.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementAt(index_type aIndex, Item&& aItem);
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementAt(index_type aIndex, Item&& aItem,
const mozilla::fallible_t&)
{
return InsertElementAt<Item, FallibleAlloc>(aIndex,
mozilla::Forward<Item>(aItem));
}
// This method searches for the smallest index of an element that is strictly
// greater than |aItem|. If |aItem| is inserted at this index, the array will
// remain sorted and |aItem| would come after all elements that are equal to
// it. If |aItem| is greater than or equal to all elements in the array, the
// array length is returned.
//
// Note that consumers who want to know whether there are existing items equal
// to |aItem| in the array can just check that the return value here is > 0
// and indexing into the previous slot gives something equal to |aItem|.
//
//
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of greatest element <= to |aItem|
// @precondition The array is sorted
template<class Item, class Comparator>
index_type IndexOfFirstElementGt(const Item& aItem,
const Comparator& aComp) const
{
using mozilla::BinarySearchIf;
typedef ::detail::ItemComparatorFirstElementGT<Item, Comparator> Cmp;
size_t index;
BinarySearchIf(*this, 0, Length(), Cmp(aItem, aComp), &index);
return index;
}
// A variation on the IndexOfFirstElementGt method defined above.
template<class Item>
index_type
IndexOfFirstElementGt(const Item& aItem) const
{
return IndexOfFirstElementGt(aItem, nsDefaultComparator<elem_type, Item>());
}
// Inserts |aItem| at such an index to guarantee that if the array
// was previously sorted, it will remain sorted after this
// insertion.
protected:
template<class Item, class Comparator, typename ActualAlloc = Alloc>
elem_type* InsertElementSorted(Item&& aItem, const Comparator& aComp)
{
index_type index = IndexOfFirstElementGt<Item, Comparator>(aItem, aComp);
return InsertElementAt<Item, ActualAlloc>(
index, mozilla::Forward<Item>(aItem));
}
public:
template<class Item, class Comparator>
MOZ_MUST_USE
elem_type* InsertElementSorted(Item&& aItem, const Comparator& aComp,
const mozilla::fallible_t&)
{
return InsertElementSorted<Item, Comparator, FallibleAlloc>(
mozilla::Forward<Item>(aItem), aComp);
}
// A variation on the InsertElementSorted method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementSorted(Item&& aItem)
{
nsDefaultComparator<elem_type, Item> comp;
return InsertElementSorted<Item, decltype(comp), ActualAlloc>(
mozilla::Forward<Item>(aItem), comp);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementSorted(Item&& aItem, const mozilla::fallible_t&)
{
return InsertElementSorted<Item, FallibleAlloc>(
mozilla::Forward<Item>(aItem));
}
// This method appends elements to the end of this array.
// @param aArray The elements to append to this array.
// @param aArrayLen The number of elements to append to this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* AppendElements(const Item* aArray, size_type aArrayLen);
public:
template<class Item>
/* MOZ_MUST_USE */
elem_type* AppendElements(const Item* aArray, size_type aArrayLen,
const mozilla::fallible_t&)
{
return AppendElements<Item, FallibleAlloc>(aArray, aArrayLen);
}
// A variation on the AppendElements method defined above.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* AppendElements(const nsTArray_Impl<Item, Allocator>& aArray)
{
return AppendElements<Item, ActualAlloc>(aArray.Elements(), aArray.Length());
}
public:
template<class Item, class Allocator>
/* MOZ_MUST_USE */
elem_type* AppendElements(const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&)
{
return AppendElements<Item, Allocator, FallibleAlloc>(aArray);
}
// Move all elements from another array to the end of this array.
// @return A pointer to the newly appended elements, or null on OOM.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* AppendElements(nsTArray_Impl<Item, Allocator>&& aArray);
public:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
/* MOZ_MUST_USE */
elem_type* AppendElements(nsTArray_Impl<Item, Allocator>&& aArray,
const mozilla::fallible_t&)
{
return AppendElements<Item, Allocator>(mozilla::Move(aArray));
}
// Append a new element, move constructing if possible.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* AppendElement(Item&& aItem);
public:
template<class Item>
/* MOZ_MUST_USE */
elem_type* AppendElement(Item&& aItem,
const mozilla::fallible_t&)
{
return AppendElement<Item, FallibleAlloc>(mozilla::Forward<Item>(aItem));
}
// Append new elements without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended elements, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* AppendElements(size_type aCount) {
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + aCount, sizeof(elem_type)))) {
return nullptr;
}
elem_type* elems = Elements() + Length();
size_type i;
for (i = 0; i < aCount; ++i) {
elem_traits::Construct(elems + i);
}
this->IncrementLength(aCount);
return elems;
}
public:
/* MOZ_MUST_USE */
elem_type* AppendElements(size_type aCount,
const mozilla::fallible_t&)
{
return AppendElements<FallibleAlloc>(aCount);
}
// Append a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended element, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* AppendElement()
{
return AppendElements<ActualAlloc>(1);
}
public:
/* MOZ_MUST_USE */
elem_type* AppendElement(const mozilla::fallible_t&)
{
return AppendElement<FallibleAlloc>();
}
// This method removes a range of elements from this array.
// @param aStart The starting index of the elements to remove.
// @param aCount The number of elements to remove.
void RemoveElementsAt(index_type aStart, size_type aCount);
// A variation on the RemoveElementsAt method defined above.
void RemoveElementAt(index_type aIndex) { RemoveElementsAt(aIndex, 1); }
// A variation on the RemoveElementsAt method defined above.
void Clear() { RemoveElementsAt(0, Length()); }
// This method removes elements based on the return value of the
// callback function aPredicate. If the function returns true for
// an element, the element is removed. aPredicate will be called
// for each element in order. It is not safe to access the array
// inside aPredicate.
template<typename Predicate>
void RemoveElementsBy(Predicate aPredicate);
// This helper function combines IndexOf with RemoveElementAt to "search
// and destroy" the first element that is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElement(const Item& aItem, const Comparator& aComp)
{
index_type i = IndexOf(aItem, 0, aComp);
if (i == NoIndex) {
return false;
}
RemoveElementAt(i);
return true;
}
// A variation on the RemoveElement method defined above that assumes
// that 'operator==' is defined for elem_type.
template<class Item>
bool RemoveElement(const Item& aItem)
{
return RemoveElement(aItem, nsDefaultComparator<elem_type, Item>());
}
// This helper function combines IndexOfFirstElementGt with
// RemoveElementAt to "search and destroy" the last element that
// is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElementSorted(const Item& aItem, const Comparator& aComp)
{
index_type index = IndexOfFirstElementGt(aItem, aComp);
if (index > 0 && aComp.Equals(ElementAt(index - 1), aItem)) {
RemoveElementAt(index - 1);
return true;
}
return false;
}
// A variation on the RemoveElementSorted method defined above.
template<class Item>
bool RemoveElementSorted(const Item& aItem)
{
return RemoveElementSorted(aItem, nsDefaultComparator<elem_type, Item>());
}
// This method causes the elements contained in this array and the given
// array to be swapped.
template<class Allocator>
typename Alloc::ResultType SwapElements(nsTArray_Impl<E, Allocator>& aOther)
{
return Alloc::Result(this->template SwapArrayElements<Alloc>(
aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type)));
}
//
// Allocation
//
// This method may increase the capacity of this array object by the
// specified amount. This method may be called in advance of several
// AppendElement operations to minimize heap re-allocations. This method
// will not reduce the number of elements in this array.
// @param aCapacity The desired capacity of this array.
// @return True if the operation succeeded; false if we ran out of memory
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetCapacity(size_type aCapacity)
{
return ActualAlloc::Result(this->template EnsureCapacity<ActualAlloc>(
aCapacity, sizeof(elem_type)));
}
public:
MOZ_MUST_USE
bool SetCapacity(size_type aCapacity, const mozilla::fallible_t&)
{
return SetCapacity<FallibleAlloc>(aCapacity);
}
// This method modifies the length of the array. If the new length is
// larger than the existing length of the array, then new elements will be
// constructed using elem_type's default constructor. Otherwise, this call
// removes elements from the array (see also RemoveElementsAt).
// @param aNewLen The desired length of this array.
// @return True if the operation succeeded; false otherwise.
// See also TruncateLength if the new length is guaranteed to be smaller than
// the old.
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetLength(size_type aNewLen)
{
size_type oldLen = Length();
if (aNewLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
InsertElementsAt<ActualAlloc>(oldLen, aNewLen - oldLen) != nullptr);
}
TruncateLength(aNewLen);
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
MOZ_MUST_USE
bool SetLength(size_type aNewLen, const mozilla::fallible_t&)
{
return SetLength<FallibleAlloc>(aNewLen);
}
// This method modifies the length of the array, but may only be
// called when the new length is shorter than the old. It can
// therefore be called when elem_type has no default constructor,
// unlike SetLength. It removes elements from the array (see also
// RemoveElementsAt).
// @param aNewLen The desired length of this array.
void TruncateLength(size_type aNewLen)
{
size_type oldLen = Length();
MOZ_ASSERT(aNewLen <= oldLen,
"caller should use SetLength instead");
RemoveElementsAt(aNewLen, oldLen - aNewLen);
}
// This method ensures that the array has length at least the given
// length. If the current length is shorter than the given length,
// then new elements will be constructed using elem_type's default
// constructor.
// @param aMinLen The desired minimum length of this array.
// @return True if the operation succeeded; false otherwise.
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType EnsureLengthAtLeast(size_type aMinLen)
{
size_type oldLen = Length();
if (aMinLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
!!InsertElementsAt<ActualAlloc>(oldLen, aMinLen - oldLen));
}
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
MOZ_MUST_USE
bool EnsureLengthAtLeast(size_type aMinLen, const mozilla::fallible_t&)
{
return EnsureLengthAtLeast<FallibleAlloc>(aMinLen);
}
// This method inserts elements into the array, constructing
// them using elem_type's default constructor.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert
protected:
template<typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, size_type aCount)
{
if (!base_type::template InsertSlotsAt<ActualAlloc>(aIndex, aCount,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type* iter = Elements() + aIndex;
elem_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter);
}
return Elements() + aIndex;
}
public:
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const mozilla::fallible_t&)
{
return InsertElementsAt<FallibleAlloc>(aIndex, aCount);
}
// This method inserts elements into the array, constructing them
// elem_type's copy constructor (or whatever one-arg constructor
// happens to match the Item type).
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert.
// @param aItem the value to use when constructing the new elements.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem);
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem, const mozilla::fallible_t&)
{
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aCount, aItem);
}
// This method may be called to minimize the memory used by this array.
void Compact()
{
ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
//
// Sorting
//
// This function is meant to be used with the NS_QuickSort function. It
// maps the callback API expected by NS_QuickSort to the Comparator API
// used by nsTArray_Impl. See nsTArray_Impl::Sort.
template<class Comparator>
static int Compare(const void* aE1, const void* aE2, void* aData)
{
const Comparator* c = reinterpret_cast<const Comparator*>(aData);
const elem_type* a = static_cast<const elem_type*>(aE1);
const elem_type* b = static_cast<const elem_type*>(aE2);
return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
}
// This method sorts the elements of the array. It uses the LessThan
// method defined on the given Comparator object to collate elements.
// @param aComp The Comparator used to collate elements.
template<class Comparator>
void Sort(const Comparator& aComp)
{
NS_QuickSort(Elements(), Length(), sizeof(elem_type),
Compare<Comparator>, const_cast<Comparator*>(&aComp));
}
// A variation on the Sort method defined above that assumes that
// 'operator<' is defined for elem_type.
void Sort() { Sort(nsDefaultComparator<elem_type, elem_type>()); }
protected:
using base_type::Hdr;
using base_type::ShrinkCapacity;
// This method invokes elem_type's destructor on a range of elements.
// @param aStart The index of the first element to destroy.
// @param aCount The number of elements to destroy.
void DestructRange(index_type aStart, size_type aCount)
{
elem_type* iter = Elements() + aStart;
elem_type *iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Destruct(iter);
}
}
// This method invokes elem_type's copy-constructor on a range of elements.
// @param aStart The index of the first element to construct.
// @param aCount The number of elements to construct.
// @param aValues The array of elements to copy.
template<class Item>
void AssignRange(index_type aStart, size_type aCount, const Item* aValues)
{
AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
mozilla::IsSame<Item, elem_type>::value>
::implementation(Elements(), aStart, aCount, aValues);
}
};
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen) -> elem_type*
{
// Adjust memory allocation up-front to catch errors.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + aArrayLen - aCount, sizeof(elem_type)))) {
return nullptr;
}
DestructRange(aStart, aCount);
this->template ShiftData<ActualAlloc>(aStart, aCount, aArrayLen,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
AssignRange(aStart, aArrayLen, aArray);
return Elements() + aStart;
}
template<typename E, class Alloc>
void
nsTArray_Impl<E, Alloc>::RemoveElementsAt(index_type aStart, size_type aCount)
{
MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");
MOZ_ASSERT(aStart + aCount <= Length(), "Invalid length");
// Check that the previous assert didn't overflow
MOZ_ASSERT(aStart <= aStart + aCount, "Start index plus length overflows");
DestructRange(aStart, aCount);
this->template ShiftData<InfallibleAlloc>(aStart, aCount, 0,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
}
template<typename E, class Alloc>
template<typename Predicate>
void
nsTArray_Impl<E, Alloc>::RemoveElementsBy(Predicate aPredicate)
{
if (base_type::mHdr == EmptyHdr()) {
return;
}
index_type j = 0;
index_type len = Length();
for (index_type i = 0; i < len; ++i) {
if (aPredicate(Elements()[i])) {
elem_traits::Destruct(Elements() + i);
} else {
if (j < i) {
copy_type::MoveNonOverlappingRegion(Elements() + j, Elements() + i,
1, sizeof(elem_type));
}
++j;
}
}
base_type::mHdr->mLength = j;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem) -> elem_type*
{
if (!base_type::template InsertSlotsAt<ActualAlloc>(aIndex, aCount,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type* iter = Elements() + aIndex;
elem_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter, aItem);
}
return Elements() + aIndex;
}
template<typename E, class Alloc>
template<typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementAt(index_type aIndex) -> elem_type*
{
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
elem_type* elem = Elements() + aIndex;
elem_traits::Construct(elem);
return elem;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementAt(index_type aIndex, Item&& aItem) -> elem_type*
{
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
elem_type* elem = Elements() + aIndex;
elem_traits::Construct(elem, mozilla::Forward<Item>(aItem));
return elem;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElements(const Item* aArray, size_type aArrayLen) -> elem_type*
{
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + aArrayLen, sizeof(elem_type)))) {
return nullptr;
}
index_type len = Length();
AssignRange(len, aArrayLen, aArray);
this->IncrementLength(aArrayLen);
return Elements() + len;
}
template<typename E, class Alloc>
template<class Item, class Allocator, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElements(nsTArray_Impl<Item, Allocator>&& aArray) -> elem_type*
{
MOZ_ASSERT(&aArray != this, "argument must be different aArray");
if (Length() == 0) {
SwapElements<ActualAlloc>(aArray);
return Elements();
}
index_type len = Length();
index_type otherLen = aArray.Length();
if (!Alloc::Successful(this->template EnsureCapacity<Alloc>(
len + otherLen, sizeof(elem_type)))) {
return nullptr;
}
copy_type::MoveNonOverlappingRegion(Elements() + len, aArray.Elements(), otherLen,
sizeof(elem_type));
this->IncrementLength(otherLen);
aArray.template ShiftData<Alloc>(0, otherLen, 0, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
return Elements() + len;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElement(Item&& aItem) -> elem_type*
{
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
elem_type* elem = Elements() + Length();
elem_traits::Construct(elem, mozilla::Forward<Item>(aItem));
this->IncrementLength(1);
return elem;
}
template<typename E, typename Alloc>
inline void
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
{
aField.Clear();
}
template<typename E, typename Alloc>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
nsTArray_Impl<E, Alloc>& aField,
const char* aName,
uint32_t aFlags = 0)
{
aFlags |= CycleCollectionEdgeNameArrayFlag;
size_t length = aField.Length();
for (size_t i = 0; i < length; ++i) {
ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
}
}
//
// nsTArray is an infallible vector class. See the comment at the top of this
// file for more details.
//
template<class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
typedef nsTArray<E> self_type;
typedef typename base_type::size_type size_type;
nsTArray() {}
explicit nsTArray(size_type aCapacity) : base_type(aCapacity) {}
explicit nsTArray(const nsTArray& aOther) : base_type(aOther) {}
MOZ_IMPLICIT nsTArray(nsTArray&& aOther) : base_type(mozilla::Move(aOther)) {}
MOZ_IMPLICIT nsTArray(std::initializer_list<E> aIL) : base_type(aIL) {}
template<class Allocator>
explicit nsTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther)
{
}
template<class Allocator>
MOZ_IMPLICIT nsTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
self_type& operator=(self_type&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
template<class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
using base_type::AppendElement;
using base_type::AppendElements;
using base_type::EnsureLengthAtLeast;
using base_type::InsertElementAt;
using base_type::InsertElementsAt;
using base_type::InsertElementSorted;
using base_type::ReplaceElementsAt;
using base_type::SetCapacity;
using base_type::SetLength;
};
//
// FallibleTArray is a fallible vector class.
//
template<class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
typedef FallibleTArray<E> self_type;
typedef typename base_type::size_type size_type;
FallibleTArray() {}
explicit FallibleTArray(size_type aCapacity) : base_type(aCapacity) {}
explicit FallibleTArray(const FallibleTArray<E>& aOther) : base_type(aOther) {}
FallibleTArray(FallibleTArray<E>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
template<class Allocator>
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther)
{
}
template<class Allocator>
explicit FallibleTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
self_type& operator=(self_type&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
template<class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
};
//
// AutoTArray<E, N> is like nsTArray<E>, but with N elements of inline storage.
// Storing more than N elements is fine, but it will cause a heap allocation.
//
template<class E, size_t N>
class MOZ_NON_MEMMOVABLE AutoTArray : public nsTArray<E>
{
static_assert(N != 0, "AutoTArray<E, 0> should be specialized");
public:
typedef AutoTArray<E, N> self_type;
typedef nsTArray<E> base_type;
typedef typename base_type::Header Header;
typedef typename base_type::elem_type elem_type;
AutoTArray()
{
Init();
}
AutoTArray(const self_type& aOther)
{
Init();
this->AppendElements(aOther);
}
explicit AutoTArray(const base_type& aOther)
{
Init();
this->AppendElements(aOther);
}
explicit AutoTArray(base_type&& aOther)
{
Init();
this->SwapElements(aOther);
}
template<typename Allocator>
explicit AutoTArray(nsTArray_Impl<elem_type, Allocator>&& aOther)
{
Init();
this->SwapElements(aOther);
}
MOZ_IMPLICIT AutoTArray(std::initializer_list<E> aIL)
{
Init();
this->AppendElements(aIL.begin(), aIL.size());
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
private:
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
// to mAutoBuf.
template<class Allocator, class Copier>
friend class nsTArray_base;
void Init()
{
static_assert(MOZ_ALIGNOF(elem_type) <= 8,
"can't handle alignments greater than 8, "
"see nsTArray_base::UsesAutoArrayBuffer()");
// Temporary work around for VS2012 RC compiler crash
Header** phdr = base_type::PtrToHdr();
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
(*phdr)->mLength = 0;
(*phdr)->mCapacity = N;
(*phdr)->mIsAutoArray = 1;
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
reinterpret_cast<Header*>(&mAutoBuf),
"GetAutoArrayBuffer needs to be fixed");
}
// Declare mAutoBuf aligned to the maximum of the header's alignment and
// elem_type's alignment. We need to use a union rather than
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
// __attribute__((aligned(foo))).
union
{
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
// Do the max operation inline to ensure that it is a compile-time constant.
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type)) ?
MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
};
};
//
// Specialization of AutoTArray<E, N> for the case where N == 0.
// AutoTArray<E, 0> behaves exactly like nsTArray<E>, but without this
// specialization, it stores a useless inline header.
//
// We do have many AutoTArray<E, 0> objects in memory: about 2,000 per tab as
// of May 2014. These are typically not explicitly AutoTArray<E, 0> but rather
// AutoTArray<E, N> for some value N depending on template parameters, in
// generic code.
//
// For that reason, we optimize this case with the below partial specialization,
// which ensures that AutoTArray<E, 0> is just like nsTArray<E>, without any
// inline header overhead.
//
template<class E>
class AutoTArray<E, 0> : public nsTArray<E>
{
};
template<class E, size_t N>
struct nsTArray_CopyChooser<AutoTArray<E, N>>
{
typedef nsTArray_CopyWithConstructors<AutoTArray<E, N>> Type;
};
// Assert that AutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. AutoTArray<uint32_t, 1> wouldn't work. Since AutoTArray
// contains a pointer, its size must be a multiple of alignof(void*). (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.) The compiler pads the end of the structure to
// enforce this rule.
//
// If we used AutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
static_assert(sizeof(AutoTArray<uint32_t, 2>) ==
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
"AutoTArray shouldn't contain any extra padding, "
"see the comment");
// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"
#endif // nsTArray_h__
|