/usr/include/thunderbird/nsCoord.h is in thunderbird-dev 1:52.8.0-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef NSCOORD_H
#define NSCOORD_H
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsMathUtils.h"
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include "nsDebug.h"
#include <algorithm>
/*
* Basic type used for the geometry classes.
*
* Normally all coordinates are maintained in an app unit coordinate
* space. An app unit is 1/60th of a CSS device pixel, which is, in turn
* an integer number of device pixels, such at the CSS DPI is as close to
* 96dpi as possible.
*/
// This controls whether we're using integers or floats for coordinates. We
// want to eventually use floats.
//#define NS_COORD_IS_FLOAT
inline float NS_IEEEPositiveInfinity() {
union { uint32_t mPRUint32; float mFloat; } pun;
pun.mPRUint32 = 0x7F800000;
return pun.mFloat;
}
inline bool NS_IEEEIsNan(float aF) {
union { uint32_t mBits; float mFloat; } pun;
pun.mFloat = aF;
return (pun.mBits & 0x7F800000) == 0x7F800000 &&
(pun.mBits & 0x007FFFFF) != 0;
}
#ifdef NS_COORD_IS_FLOAT
typedef float nscoord;
#define nscoord_MAX NS_IEEEPositiveInfinity()
#else
typedef int32_t nscoord;
#define nscoord_MAX nscoord(1 << 30)
#endif
#define nscoord_MIN (-nscoord_MAX)
inline void VERIFY_COORD(nscoord aCoord) {
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(floorf(aCoord) == aCoord,
"Coords cannot have fractions");
#endif
}
/**
* Divide aSpace by aN. Assign the resulting quotient to aQuotient and
* return the remainder.
*/
inline nscoord NSCoordDivRem(nscoord aSpace, size_t aN, nscoord* aQuotient)
{
#ifdef NS_COORD_IS_FLOAT
*aQuotient = aSpace / aN;
return 0.0f;
#else
div_t result = div(aSpace, aN);
*aQuotient = nscoord(result.quot);
return nscoord(result.rem);
#endif
}
inline nscoord NSCoordMulDiv(nscoord aMult1, nscoord aMult2, nscoord aDiv) {
#ifdef NS_COORD_IS_FLOAT
return (aMult1 * aMult2 / aDiv);
#else
return (int64_t(aMult1) * int64_t(aMult2) / int64_t(aDiv));
#endif
}
inline nscoord NSToCoordRound(float aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__)
return NS_lroundup30(aValue);
#else
return nscoord(floorf(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRound(double aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__)
return NS_lroundup30((float)aValue);
#else
return nscoord(floor(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRoundWithClamp(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordRound(aValue);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale. If requireNotNegative is
* true, this method will enforce that aScale is not negative; use that
* parametrization to get a check of that fact in debug builds.
*/
inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale,
bool requireNotNegative) {
VERIFY_COORD(aCoord);
if (requireNotNegative) {
MOZ_ASSERT(aScale >= 0.0f,
"negative scaling factors must be handled manually");
}
#ifdef NS_COORD_IS_FLOAT
return floorf(aCoord * aScale);
#else
float product = aCoord * aScale;
if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0))
return NSToCoordRoundWithClamp(std::min<float>(nscoord_MAX, product));
return NSToCoordRoundWithClamp(std::max<float>(nscoord_MIN, product));
#endif
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the sign of aCoord. This method requires aScale to not be
* negative; use this method when you know that aScale should never be
* negative to get a sanity check of that invariant in debug builds.
*/
inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord, float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, true);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale.
*/
inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, false);
}
/**
* Returns a + b, capping the sum to nscoord_MAX.
*
* This function assumes that neither argument is nscoord_MIN.
*
* Note: If/when we start using floats for nscoords, this function won't be as
* necessary. Normal float addition correctly handles adding with infinity,
* assuming we aren't adding nscoord_MIN. (-infinity)
*/
inline nscoord
NSCoordSaturatingAdd(nscoord a, nscoord b)
{
VERIFY_COORD(a);
VERIFY_COORD(b);
#ifdef NS_COORD_IS_FLOAT
// Float math correctly handles a+b, given that neither is -infinity.
return a + b;
#else
if (a == nscoord_MAX || b == nscoord_MAX) {
// infinity + anything = anything + infinity = infinity
return nscoord_MAX;
} else {
// a + b = a + b
// Cap the result, just in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a + b);
}
#endif
}
/**
* Returns a - b, gracefully handling cases involving nscoord_MAX.
* This function assumes that neither argument is nscoord_MIN.
*
* The behavior is as follows:
*
* a) infinity - infinity -> infMinusInfResult
* b) N - infinity -> 0 (unexpected -- triggers NOTREACHED)
* c) infinity - N -> infinity
* d) N1 - N2 -> N1 - N2
*
* Note: For float nscoords, cases (c) and (d) are handled by normal float
* math. We still need to explicitly specify the behavior for cases (a)
* and (b), though. (Under normal float math, those cases would return NaN
* and -infinity, respectively.)
*/
inline nscoord
NSCoordSaturatingSubtract(nscoord a, nscoord b,
nscoord infMinusInfResult)
{
VERIFY_COORD(a);
VERIFY_COORD(b);
if (b == nscoord_MAX) {
if (a == nscoord_MAX) {
// case (a)
return infMinusInfResult;
} else {
// case (b)
NS_NOTREACHED("Attempted to subtract [n - nscoord_MAX]");
return 0;
}
} else {
#ifdef NS_COORD_IS_FLOAT
// case (c) and (d) for floats. (float math handles both)
return a - b;
#else
if (a == nscoord_MAX) {
// case (c) for integers
return nscoord_MAX;
} else {
// case (d) for integers
// Cap the result, in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a - b);
}
#endif
}
}
inline float NSCoordToFloat(nscoord aCoord) {
VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in float conversion");
#endif
return (float)aCoord;
}
/*
* Coord Rounding Functions
*/
inline nscoord NSToCoordFloor(float aValue)
{
return nscoord(floorf(aValue));
}
inline nscoord NSToCoordFloor(double aValue)
{
return nscoord(floor(aValue));
}
inline nscoord NSToCoordFloorClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordFloor(aValue);
}
inline nscoord NSToCoordCeil(float aValue)
{
return nscoord(ceilf(aValue));
}
inline nscoord NSToCoordCeil(double aValue)
{
return nscoord(ceil(aValue));
}
inline nscoord NSToCoordCeilClamped(double aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordCeil(aValue);
}
// The NSToCoordTrunc* functions remove the fractional component of
// aValue, and are thus equivalent to NSToCoordFloor* for positive
// values and NSToCoordCeil* for negative values.
inline nscoord NSToCoordTrunc(float aValue)
{
// There's no need to use truncf() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTrunc(double aValue)
{
// There's no need to use trunc() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTruncClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
inline nscoord NSToCoordTruncClamped(double aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
/*
* Int Rounding Functions
*/
inline int32_t NSToIntFloor(float aValue)
{
return int32_t(floorf(aValue));
}
inline int32_t NSToIntCeil(float aValue)
{
return int32_t(ceilf(aValue));
}
inline int32_t NSToIntRound(float aValue)
{
return NS_lroundf(aValue);
}
inline int32_t NSToIntRound(double aValue)
{
return NS_lround(aValue);
}
inline int32_t NSToIntRoundUp(double aValue)
{
return int32_t(floor(aValue + 0.5));
}
/*
* App Unit/Pixel conversions
*/
inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel)
{
return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel);
}
inline nscoord NSIntPixelsToAppUnits(int32_t aPixels, int32_t aAppUnitsPerPixel)
{
// The cast to nscoord makes sure we don't overflow if we ever change
// nscoord to float
nscoord r = aPixels * (nscoord)aAppUnitsPerPixel;
VERIFY_COORD(r);
return r;
}
inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
return (float(aAppUnits) / aAppUnitsPerPixel);
}
inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, double aAppUnitsPerPixel)
{
return (double(aAppUnits) / aAppUnitsPerPixel);
}
inline int32_t NSAppUnitsToIntPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel);
}
inline float NSCoordScale(nscoord aCoord, int32_t aFromAPP, int32_t aToAPP)
{
return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP;
}
/// handy constants
#define TWIPS_PER_POINT_INT 20
#define TWIPS_PER_POINT_FLOAT 20.0f
#define POINTS_PER_INCH_INT 72
#define POINTS_PER_INCH_FLOAT 72.0f
#define CM_PER_INCH_FLOAT 2.54f
#define MM_PER_INCH_FLOAT 25.4f
/*
* Twips/unit conversions
*/
inline float NSUnitsToTwips(float aValue, float aPointsPerUnit)
{
return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT;
}
inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint)
{
return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT));
}
/// Unit conversion macros
//@{
#define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f)
#define NS_INCHES_TO_TWIPS(x) NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT) // 72 points per inch
#define NS_MILLIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f))
#define NS_POINTS_TO_INT_TWIPS(x) NSToIntRound(NS_POINTS_TO_TWIPS(x))
#define NS_INCHES_TO_INT_TWIPS(x) NSToIntRound(NS_INCHES_TO_TWIPS(x))
#define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT)
#define NS_TWIPS_TO_MILLIMETERS(x) NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f))
//@}
#endif /* NSCOORD_H */
|