This file is indexed.

/usr/include/thunderbird/mozilla/gfx/Polygon.h is in thunderbird-dev 1:52.8.0-1~deb8u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_POLYGON_H
#define MOZILLA_GFX_POLYGON_H

#include "Matrix.h"
#include "mozilla/Move.h"
#include "nsTArray.h"
#include "Point.h"
#include "Triangle.h"

#include <initializer_list>

namespace mozilla {
namespace gfx {

// Polygon3DTyped stores the points of a convex planar polygon.
template<class Units>
class Polygon3DTyped {
public:
  Polygon3DTyped() {}

  explicit Polygon3DTyped(const std::initializer_list<Point3DTyped<Units>>& aPoints,
                          Point3DTyped<Units> aNormal =
                            Point3DTyped<Units>(0.0f, 0.0f, 1.0f))
    : mNormal(aNormal), mPoints(aPoints)
  {
#ifdef DEBUG
    EnsurePlanarPolygon();
#endif
  }

  explicit Polygon3DTyped(nsTArray<Point3DTyped<Units>>&& aPoints,
                          Point3DTyped<Units> aNormal =
                            Point3DTyped<Units>(0.0f, 0.0f, 1.0f))
    : mNormal(aNormal), mPoints(Move(aPoints))
  {
#ifdef DEBUG
    EnsurePlanarPolygon();
#endif
  }

  explicit Polygon3DTyped(const nsTArray<Point3DTyped<Units>>& aPoints,
                          Point3DTyped<Units> aNormal =
                            Point3DTyped<Units>(0.0f, 0.0f, 1.0f))
    : mNormal(aNormal), mPoints(aPoints)
  {
#ifdef DEBUG
    EnsurePlanarPolygon();
#endif
  }

  RectTyped<Units> BoundingBox() const
  {
    float minX, maxX, minY, maxY;
    minX = maxX = mPoints[0].x;
    minY = maxY = mPoints[0].y;

    for (const Point3DTyped<Units>& point : mPoints) {
      minX = std::min(point.x, minX);
      maxX = std::max(point.x, maxX);

      minY = std::min(point.y, minY);
      maxY = std::max(point.y, maxY);
    }

    return RectTyped<Units>(minX, minY, maxX - minX, maxY - minY);
  }

  nsTArray<float>
  CalculateDotProducts(const Polygon3DTyped<Units>& aPlane,
                       size_t& aPos, size_t& aNeg) const
  {
    // Point classification might produce incorrect results due to numerical
    // inaccuracies. Using an epsilon value makes the splitting plane "thicker".
    const float epsilon = 0.05f;

    MOZ_ASSERT(!aPlane.GetPoints().IsEmpty());
    const Point3DTyped<Units>& planeNormal = aPlane.GetNormal();
    const Point3DTyped<Units>& planePoint = aPlane[0];

    aPos = aNeg = 0;
    nsTArray<float> dotProducts;
    for (const Point3DTyped<Units>& point : mPoints) {
      float dot = (point - planePoint).DotProduct(planeNormal);

      if (dot > epsilon) {
        aPos++;
      } else if (dot < -epsilon) {
        aNeg++;
      } else {
        // The point is within the thick plane.
        dot = 0.0f;
      }

      dotProducts.AppendElement(dot);
    }

    return dotProducts;
  }

  // Clips the polygon against the given 2D rectangle.
  Polygon3DTyped<Units> ClipPolygon(const RectTyped<Units>& aRect) const
  {
    Polygon3DTyped<Units> polygon(mPoints, mNormal);

    // Left edge
    ClipPolygonWithEdge(polygon, aRect.BottomLeft(), aRect.TopLeft());

    // Bottom edge
    ClipPolygonWithEdge(polygon, aRect.BottomRight(), aRect.BottomLeft());

    // Right edge
    ClipPolygonWithEdge(polygon, aRect.TopRight(), aRect.BottomRight());

    // Top edge
    ClipPolygonWithEdge(polygon, aRect.TopLeft(), aRect.TopRight());

    return polygon;
  }

  const Point3DTyped<Units>& GetNormal() const
  {
    return mNormal;
  }

  const nsTArray<Point3DTyped<Units>>& GetPoints() const
  {
    return mPoints;
  }

  const Point3DTyped<Units>& operator[](size_t aIndex) const
  {
    MOZ_ASSERT(mPoints.Length() > aIndex);
    return mPoints[aIndex];
  }

  void SplitPolygon(const Polygon3DTyped<Units>& aSplittingPlane,
                    const nsTArray<float>& aDots,
                    nsTArray<Point3DTyped<Units>>& aBackPoints,
                    nsTArray<Point3DTyped<Units>>& aFrontPoints) const
  {
    static const auto Sign = [](const float& f) {
      if (f > 0.0f) return 1;
      if (f < 0.0f) return -1;
      return 0;
    };

    const Point3DTyped<Units>& normal = aSplittingPlane.GetNormal();
    const size_t pointCount = mPoints.Length();

    for (size_t i = 0; i < pointCount; ++i) {
      size_t j = (i + 1) % pointCount;

      const Point3DTyped<Units>& a = mPoints[i];
      const Point3DTyped<Units>& b = mPoints[j];
      const float dotA = aDots[i];
      const float dotB = aDots[j];

      // The point is in front of or on the plane.
      if (dotA >= 0) {
        aFrontPoints.AppendElement(a);
      }

      // The point is behind or on the plane.
      if (dotA <= 0) {
        aBackPoints.AppendElement(a);
      }

      // If the sign of the dot products changes between two consecutive
      // vertices, then the plane intersects with the polygon edge.
      // The case where the polygon edge is within the plane is handled above.
      if (Sign(dotA) && Sign(dotB) && Sign(dotA) != Sign(dotB)) {
        // Calculate the line segment and plane intersection point.
        const Point3DTyped<Units> ab = b - a;
        const float dotAB = ab.DotProduct(normal);
        const float t = -dotA / dotAB;
        const Point3DTyped<Units> p = a + (ab * t);

        // Add the intersection point to both polygons.
        aBackPoints.AppendElement(p);
        aFrontPoints.AppendElement(p);
      }
    }
  }

  nsTArray<TriangleTyped<Units>> ToTriangles() const
  {
    nsTArray<TriangleTyped<Units>> triangles;

    if (mPoints.Length() < 3) {
      return triangles;
    }

    for (size_t i = 1; i < mPoints.Length() - 1; ++i) {
      TriangleTyped<Units> triangle(Point(mPoints[0].x, mPoints[0].y),
                                    Point(mPoints[i].x, mPoints[i].y),
                                    Point(mPoints[i+1].x, mPoints[i+1].y));
      triangles.AppendElement(Move(triangle));
    }

    return triangles;
  }

  void TransformToLayerSpace(const Matrix4x4Typed<Units, Units>& aTransform)
  {
    TransformPoints(aTransform);
    mNormal = Point3DTyped<Units>(0.0f, 0.0f, 1.0f);
  }

  void TransformToScreenSpace(const Matrix4x4Typed<Units, Units>& aTransform)
  {
    TransformPoints(aTransform);

    // Normal vectors should be transformed using inverse transpose.
    mNormal = aTransform.Inverse().Transpose().TransformPoint(mNormal);
  }

private:
  void ClipPolygonWithEdge(Polygon3DTyped<Units>& aPolygon,
                           const PointTyped<Units>& aFirst,
                           const PointTyped<Units>& aSecond) const
  {
    const Point3DTyped<Units> a(aFirst.x, aFirst.y, 0.0f);
    const Point3DTyped<Units> b(aSecond.x, aSecond.y, 0.0f);
    const Point3DTyped<Units> normal(b.y - a.y, a.x - b.x, 0.0f);
    Polygon3DTyped<Units> plane({a, b}, normal);

    size_t pos, neg;
    nsTArray<float> dots = aPolygon.CalculateDotProducts(plane, pos, neg);

    nsTArray<Point3DTyped<Units>> backPoints, frontPoints;
    aPolygon.SplitPolygon(plane, dots, backPoints, frontPoints);

    // Only use the points that are behind the clipping plane.
    aPolygon = Polygon3DTyped<Units>(Move(backPoints), aPolygon.GetNormal());
  }

#ifdef DEBUG
  void EnsurePlanarPolygon() const
  {
    if (mPoints.Length() <= 3) {
      // Polygons with three or less points are guaranteed to be planar.
      return;
    }

    // This normal calculation method works only for planar polygons.
    // The resulting normal vector will point towards the viewer when the
    // polygon has a counter-clockwise winding order from the perspective
    // of the viewer.
    Point3DTyped<Units> normal;

    for (size_t i = 1; i < mPoints.Length() - 1; ++i) {
      normal +=
        (mPoints[i] - mPoints[0]).CrossProduct(mPoints[i + 1] - mPoints[0]);
    }

    // Ensure that at least one component is greater than zero.
    // This avoids division by zero when normalizing the vector.
    bool hasNonZeroComponent = std::abs(normal.x) > 0.0f ||
                               std::abs(normal.y) > 0.0f ||
                               std::abs(normal.z) > 0.0f;
    MOZ_ASSERT(hasNonZeroComponent);

    normal.Normalize();

    // Ensure that the polygon is planar.
    // http://mathworld.wolfram.com/Point-PlaneDistance.html
    const float epsilon = 0.01f;
    for (const Point3DTyped<Units>& point : mPoints) {
      float d = normal.DotProduct(point - mPoints[0]);
      MOZ_ASSERT(std::abs(d) < epsilon);
    }
  }
#endif
  void TransformPoints(const Matrix4x4Typed<Units, Units>& aTransform)
  {
    for (Point3DTyped<Units>& point : mPoints) {
      point = aTransform.TransformPoint(point);
    }
  }

  Point3DTyped<Units> mNormal;
  nsTArray<Point3DTyped<Units>> mPoints;
};

typedef Polygon3DTyped<UnknownUnits> Polygon3D;

} // namespace gfx
} // namespace mozilla

#endif /* MOZILLA_GFX_POLYGON_H */