/usr/include/thunderbird/mozilla/TaskDispatcher.h is in thunderbird-dev 1:52.8.0-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(TaskDispatcher_h_)
#define TaskDispatcher_h_
#include "mozilla/AbstractThread.h"
#include "mozilla/Maybe.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "nsISupportsImpl.h"
#include "nsTArray.h"
#include "nsThreadUtils.h"
#include <queue>
namespace mozilla {
/*
* A classic approach to cross-thread communication is to dispatch asynchronous
* runnables to perform updates on other threads. This generally works well, but
* there are sometimes reasons why we might want to delay the actual dispatch of
* these tasks until a specified moment. At present, this is primarily useful to
* ensure that mirrored state gets updated atomically - but there may be other
* applications as well.
*
* TaskDispatcher is a general abstract class that accepts tasks and dispatches
* them at some later point. These groups of tasks are per-target-thread, and
* contain separate queues for several kinds of tasks (see comments below). - "state change tasks" (which
* run first, and are intended to be used to update the value held by mirrors),
* and regular tasks, which are other arbitrary operations that the are gated
* to run after all the state changes have completed.
*/
class TaskDispatcher
{
public:
TaskDispatcher() {}
virtual ~TaskDispatcher() {}
// Direct tasks are run directly (rather than dispatched asynchronously) when
// the tail dispatcher fires. A direct task may cause other tasks to be added
// to the tail dispatcher.
virtual void AddDirectTask(already_AddRefed<nsIRunnable> aRunnable) = 0;
// State change tasks are dispatched asynchronously always run before regular
// tasks. They are intended to be used to update the value held by mirrors
// before any other dispatched tasks are run on the target thread.
virtual void AddStateChangeTask(AbstractThread* aThread,
already_AddRefed<nsIRunnable> aRunnable) = 0;
// Regular tasks are dispatched asynchronously, and run after state change
// tasks.
virtual void AddTask(AbstractThread* aThread,
already_AddRefed<nsIRunnable> aRunnable,
AbstractThread::DispatchFailureHandling aFailureHandling = AbstractThread::AssertDispatchSuccess) = 0;
virtual void DispatchTasksFor(AbstractThread* aThread) = 0;
virtual bool HasTasksFor(AbstractThread* aThread) = 0;
virtual void DrainDirectTasks() = 0;
};
/*
* AutoTaskDispatcher is a stack-scoped TaskDispatcher implementation that fires
* its queued tasks when it is popped off the stack.
*/
class AutoTaskDispatcher : public TaskDispatcher
{
public:
explicit AutoTaskDispatcher(bool aIsTailDispatcher = false)
: mIsTailDispatcher(aIsTailDispatcher)
{}
~AutoTaskDispatcher()
{
// Given that direct tasks may trigger other code that uses the tail
// dispatcher, it's better to avoid processing them in the tail dispatcher's
// destructor. So we require TailDispatchers to manually invoke
// DrainDirectTasks before the AutoTaskDispatcher gets destroyed. In truth,
// this is only necessary in the case where this AutoTaskDispatcher can be
// accessed by the direct tasks it dispatches (true for TailDispatchers, but
// potentially not true for other hypothetical AutoTaskDispatchers). Feel
// free to loosen this restriction to apply only to mIsTailDispatcher if a
// use-case requires it.
MOZ_ASSERT(!HaveDirectTasks());
for (size_t i = 0; i < mTaskGroups.Length(); ++i) {
DispatchTaskGroup(Move(mTaskGroups[i]));
}
}
bool HaveDirectTasks() const
{
return mDirectTasks.isSome() && !mDirectTasks->empty();
}
void DrainDirectTasks() override
{
while (HaveDirectTasks()) {
nsCOMPtr<nsIRunnable> r = mDirectTasks->front();
mDirectTasks->pop();
r->Run();
}
}
void AddDirectTask(already_AddRefed<nsIRunnable> aRunnable) override
{
if (mDirectTasks.isNothing()) {
mDirectTasks.emplace();
}
mDirectTasks->push(Move(aRunnable));
}
void AddStateChangeTask(AbstractThread* aThread,
already_AddRefed<nsIRunnable> aRunnable) override
{
EnsureTaskGroup(aThread).mStateChangeTasks.AppendElement(aRunnable);
}
void AddTask(AbstractThread* aThread,
already_AddRefed<nsIRunnable> aRunnable,
AbstractThread::DispatchFailureHandling aFailureHandling) override
{
PerThreadTaskGroup& group = EnsureTaskGroup(aThread);
group.mRegularTasks.AppendElement(aRunnable);
// The task group needs to assert dispatch success if any of the runnables
// it's dispatching want to assert it.
if (aFailureHandling == AbstractThread::AssertDispatchSuccess) {
group.mFailureHandling = AbstractThread::AssertDispatchSuccess;
}
}
bool HasTasksFor(AbstractThread* aThread) override
{
return !!GetTaskGroup(aThread) ||
(aThread == AbstractThread::GetCurrent() && HaveDirectTasks());
}
void DispatchTasksFor(AbstractThread* aThread) override
{
for (size_t i = 0; i < mTaskGroups.Length(); ++i) {
if (mTaskGroups[i]->mThread == aThread) {
DispatchTaskGroup(Move(mTaskGroups[i]));
mTaskGroups.RemoveElementAt(i);
return;
}
}
}
private:
struct PerThreadTaskGroup
{
public:
explicit PerThreadTaskGroup(AbstractThread* aThread)
: mThread(aThread), mFailureHandling(AbstractThread::DontAssertDispatchSuccess)
{
MOZ_COUNT_CTOR(PerThreadTaskGroup);
}
~PerThreadTaskGroup() { MOZ_COUNT_DTOR(PerThreadTaskGroup); }
RefPtr<AbstractThread> mThread;
nsTArray<nsCOMPtr<nsIRunnable>> mStateChangeTasks;
nsTArray<nsCOMPtr<nsIRunnable>> mRegularTasks;
AbstractThread::DispatchFailureHandling mFailureHandling;
};
class TaskGroupRunnable : public Runnable
{
public:
explicit TaskGroupRunnable(UniquePtr<PerThreadTaskGroup>&& aTasks) : mTasks(Move(aTasks)) {}
NS_IMETHOD Run() override
{
// State change tasks get run all together before any code is run, so
// that all state changes are made in an atomic unit.
for (size_t i = 0; i < mTasks->mStateChangeTasks.Length(); ++i) {
mTasks->mStateChangeTasks[i]->Run();
}
// Once the state changes have completed, drain any direct tasks
// generated by those state changes (i.e. watcher notification tasks).
// This needs to be outside the loop because we don't want to run code
// that might observe intermediate states.
MaybeDrainDirectTasks();
for (size_t i = 0; i < mTasks->mRegularTasks.Length(); ++i) {
mTasks->mRegularTasks[i]->Run();
// Scope direct tasks tightly to the task that generated them.
MaybeDrainDirectTasks();
}
return NS_OK;
}
private:
void MaybeDrainDirectTasks()
{
AbstractThread* currentThread = AbstractThread::GetCurrent();
if (currentThread) {
currentThread->TailDispatcher().DrainDirectTasks();
}
}
UniquePtr<PerThreadTaskGroup> mTasks;
};
PerThreadTaskGroup& EnsureTaskGroup(AbstractThread* aThread)
{
PerThreadTaskGroup* existing = GetTaskGroup(aThread);
if (existing) {
return *existing;
}
mTaskGroups.AppendElement(new PerThreadTaskGroup(aThread));
return *mTaskGroups.LastElement();
}
PerThreadTaskGroup* GetTaskGroup(AbstractThread* aThread)
{
for (size_t i = 0; i < mTaskGroups.Length(); ++i) {
if (mTaskGroups[i]->mThread == aThread) {
return mTaskGroups[i].get();
}
}
// Not found.
return nullptr;
}
void DispatchTaskGroup(UniquePtr<PerThreadTaskGroup> aGroup)
{
RefPtr<AbstractThread> thread = aGroup->mThread;
AbstractThread::DispatchFailureHandling failureHandling = aGroup->mFailureHandling;
AbstractThread::DispatchReason reason = mIsTailDispatcher ? AbstractThread::TailDispatch
: AbstractThread::NormalDispatch;
nsCOMPtr<nsIRunnable> r = new TaskGroupRunnable(Move(aGroup));
thread->Dispatch(r.forget(), failureHandling, reason);
}
// Direct tasks. We use a Maybe<> because (a) this class is hot, (b)
// mDirectTasks often doesn't get anything put into it, and (c) the
// std::queue implementation in GNU libstdc++ does two largish heap
// allocations when creating a new std::queue.
mozilla::Maybe<std::queue<nsCOMPtr<nsIRunnable>>> mDirectTasks;
// Task groups, organized by thread.
nsTArray<UniquePtr<PerThreadTaskGroup>> mTaskGroups;
// True if this TaskDispatcher represents the tail dispatcher for the thread
// upon which it runs.
const bool mIsTailDispatcher;
};
// Little utility class to allow declaring AutoTaskDispatcher as a default
// parameter for methods that take a TaskDispatcher&.
template<typename T>
class PassByRef
{
public:
PassByRef() {}
operator T&() { return mVal; }
private:
T mVal;
};
} // namespace mozilla
#endif
|