/usr/lib/swi-prolog/doc/Manual/64bits.html is in swi-prolog-nox 6.6.6-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>SWI-Prolog 7.1.16 Reference Manual: Section 2.20</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="limits.html">
<link rel="next" href="IDE.html">
<style type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}
dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}
div.caption
{ width: 80%;
margin: auto;
text-align:center;
}
/* Footnotes */
.fn {
color: red;
font-size: 70%;
}
.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}
sup:hover span.fn-text
{ display: block;
}
/* Lists */
dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}
/* PlDoc Tags */
dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}
dl.tags dd
{ margin-left: 3ex;
}
td.param
{ font-style: italic;
font-weight: bold;
}
/* Index */
dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}
/* Tables */
table.center
{ margin: auto;
}
table.latex
{ border-collapse:collapse;
}
table.latex tr
{ vertical-align: text-top;
}
table.latex td,th
{ padding: 2px 1em;
}
table.latex tr.hline td,th
{ border-top: 1px solid black;
}
table.frame-box
{ border: 2px solid black;
}
</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="limits.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="IDE.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:64bits"><a id="sec:2.20"><span class="sec-nr">2.20</span> <span class="sec-title">SWI-Prolog
and 64-bit machines</span></a></h2>
<a id="sec:64bits"></a>
<p><a id="idx:bits64:252"></a>Most of today's 64-bit platforms are
capable of running both 32-bit and 64-bit applications. This asks for
some clarifications on the advantages and drawbacks of 64-bit addressing
for (SWI-)Prolog.
<p><h3 id="sec:64bitsplatforms"><a id="sec:2.20.1"><span class="sec-nr">2.20.1</span> <span class="sec-title">Supported
platforms</span></a></h3>
<a id="sec:64bitsplatforms"></a>
<p><a id="idx:64bitsplatforms:253"></a>SWI-Prolog can be compiled for a
32- or 64-bit address space on any system with a suitable C compiler.
Pointer arithmetic is based on the type (u)intptr_t from <code>stdint.h</code>,
with suitable emulation on MS-Windows.
<p><h3 id="sec:32vs64bits"><a id="sec:2.20.2"><span class="sec-nr">2.20.2</span> <span class="sec-title">Comparing
32- and 64-bits Prolog</span></a></h3>
<a id="sec:32vs64bits"></a>
<p>Most of Prolog's memory usage consists of pointers. This indicates
the primary drawback: Prolog memory usage almost doubles when using the
64-bit addressing model. Using more memory means copying more data
between CPU and main memory, slowing down the system.
<p>What then are the advantages? First of all, SWI-Prolog's addressing
of the Prolog stacks does not cover the whole address space due to the
use of <em>type tag bits</em> and <em>garbage collection flags</em>. On
32-bit hardware the stacks are limited to 128 MB each. This tends
to be too low for demanding applications on modern hardware. On 64-bit
hardware the limit is <var>2^32</var> times higher, exceeding the
addressing capabilities of today's CPUs and operating systems. This
implies Prolog can be started with stack sizes that use the full
capabilities of your hardware.
<p>Multi-threaded applications profit much more because every thread has
its own set of stacks. The Prolog stacks start small and are dynamically
expanded (see <a class="sec" href="limits.html">section 2.19.1</a>). The
C stack is also dynamically expanded, but the maximum size is <em>reserved</em>
when a thread is started. Using 100 threads at the maximum default C
stack of 8Mb (Linux) costs 800Mb virtual memory!<sup class="fn">26<span class="fn-text">C-recursion
over Prolog data structures is removed from most of SWI-Prolog. When
removed from all predicates it will often be possible to use lower
limits in threads. See <a class="url" href="http://www.swi-prolog.org/Devel/CStack.html">http://www.swi-prolog.org/Devel/CStack.html</a></span></sup>
<p><a id="idx:IA32:254"></a><a id="idx:AMD64:255"></a>The implications
of theoretical performance loss due to increased memory bandwidth
implied by exchanging wider pointers depend on the design of the
hardware. We only have data for the popular IA32 vs. AMD64
architectures. Here, it appears that the loss is compensated for by an
instruction set that has been optimized for modern programming. In
particular, the AMD64 has more registers and the relative addressing
capabilities have been improved. Where we see a 10% performance
degradation when placing the SWI-Prolog kernel in a Unix shared object,
we cannot find a measurable difference on AMD64.
<p><h3 id="sec:32vs64bitschoice"><a id="sec:2.20.3"><span class="sec-nr">2.20.3</span> <span class="sec-title">Choosing
between 32- and 64-bit Prolog</span></a></h3>
<a id="sec:32vs64bitschoice"></a>
<p>For those cases where we can choose between 32 and 64 bits, either
because the hardware and OS support both or because we can still choose
the hardware and OS, we give guidelines for this decision.
<p>First of all, if SWI-Prolog needs to be linked against 32- or 64-bit
native libraries, there is no choice as it is not possible to link 32-
and 64-bit code into a single executable. Only if all required libraries
are available in both sizes and there is no clear reason to use either
do the different characteristics of Prolog become important.
<p>Prolog applications that require more than the 128 MB stack
limit provided in 32-bit addressing mode must use the 64-bit edition.
Note however that the limits must be doubled to accommodate the same
Prolog application.
<p>If the system is tight on physical memory, 32-bit Prolog has the
clear advantage of using only slightly more than half of the memory of
64-bit Prolog. This argument applies as long as the application fits in
the
<em>virtual address space</em> of the machine. The virtual address space
of 32-bit hardware is 4GB, but in many cases the operating system
provides less to user applications.
<p><a id="idx:RDFmemoryusage:256"></a>The only standard SWI-Prolog
library adding significantly to this calculation is the RDF database
provided by the <em>semweb</em> package. It uses approximately 80 bytes
per triple on 32-bit hardware and 150 bytes on 64-bit hardware. Details
depend on how many different resources and literals appear in the
dataset as well as desired additional literal indexes.
<p>Summarizing, if applications are small enough to fit comfortably in
virtual and physical memory, simply take the model used by most of the
applications on the OS. If applications require more than 128 MB
per stack, use the 64-bit edition. If applications approach the size of
physical memory, fit in the 128 MB stack limit and fit in virtual
memory, the 32-bit version has clear advantages. For demanding
applications on 64-bit hardware with more than about 6GB physical memory
the 64-bit model is the model of choice.
</body></html>
|