/usr/share/scheme48-1.9/srfi/srfi-43.scm is in scheme48 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | ;;;;;; SRFI 43: Vector library -*- Scheme -*-
;;; Taylor Campbell wrote this code; he places it in the public domain.
;;; --------------------
;;; Exported procedure index
;;;
;;; * Constructors
;;; make-vector vector
;;; vector-unfold vector-unfold-right
;;; vector-copy vector-reverse-copy
;;; vector-append vector-concatenate
;;;
;;; * Predicates
;;; vector?
;;; vector-empty?
;;; vector=
;;;
;;; * Selectors
;;; vector-ref
;;; vector-length
;;;
;;; * Iteration
;;; vector-fold vector-fold-right
;;; vector-map vector-map!
;;; vector-for-each
;;; vector-count
;;;
;;; * Searching
;;; vector-index vector-skip
;;; vector-index-right vector-skip-right
;;; vector-binary-search
;;; vector-any vector-every
;;;
;;; * Mutators
;;; vector-set!
;;; vector-swap!
;;; vector-fill!
;;; vector-reverse!
;;; vector-copy! vector-reverse-copy!
;;; vector-reverse!
;;;
;;; * Conversion
;;; vector->list reverse-vector->list
;;; list->vector reverse-list->vector
;;; --------------------
;;; Commentary on efficiency of the code
;;; This code is somewhat tuned for efficiency. There are several
;;; internal routines that can be optimized greatly to greatly improve
;;; the performance of much of the library. These internal procedures
;;; are already carefully tuned for performance, and lambda-lifted by
;;; hand. Some other routines are lambda-lifted by hand, but only the
;;; loops are lambda-lifted, and only if some routine has two possible
;;; loops -- a fast path and an n-ary case --, whereas _all_ of the
;;; internal routines' loops are lambda-lifted so as to never cons a
;;; closure in their body (VECTOR-PARSE-START+END doesn't have a loop),
;;; even in Scheme systems that perform no loop optimization (which is
;;; most of them, unfortunately).
;;;
;;; Fast paths are provided for common cases in most of the loops in
;;; this library.
;;;
;;; All calls to primitive vector operations are protected by a prior
;;; type check; they can be safely converted to use unsafe equivalents
;;; of the operations, if available. Ideally, the compiler should be
;;; able to determine this, but the state of Scheme compilers today is
;;; not a happy one.
;;;
;;; Efficiency of the actual algorithms is a rather mundane point to
;;; mention; vector operations are rarely beyond being straightforward.
;;; --------------------
;;; Utilities
;;; Not the best LET*-OPTIONALS, but not the worst, either. Use Olin's
;;; if it's available to you.
(define-syntax let*-optionals
(syntax-rules ()
((let*-optionals (?x ...) ((?var ?default) ...) ?body1 ?body2 ...)
(let ((args (?x ...)))
(let*-optionals args ((?var ?default) ...) ?body1 ?body2 ...)))
((let*-optionals ?args ((?var ?default) ...) ?body1 ?body2 ...)
(let*-optionals:aux ?args ?args ((?var ?default) ...)
?body1 ?body2 ...))))
(define-syntax let*-optionals:aux
(syntax-rules ()
((aux ?orig-args-var ?args-var () ?body1 ?body2 ...)
(if (null? ?args-var)
(let () ?body1 ?body2 ...)
(assertion-violation 'let*-optionals
"too many arguments"
(length ?orig-args-var) ?orig-args-var)))
((aux ?orig-args-var ?args-var
((?var ?default) ?more ...)
?body1 ?body2 ...)
(if (null? ?args-var)
(let* ((?var ?default) ?more ...) ?body1 ?body2 ...)
(let ((?var (car ?args-var))
(new-args (cdr ?args-var)))
(let*-optionals:aux ?orig-args-var new-args
(?more ...)
?body1 ?body2 ...))))))
(define (nonneg-int? x)
(and (integer? x)
(not (negative? x))))
(define (between? x y z)
(and (< x y)
(<= y z)))
; (define (unspecified-value) (if #f #f))
;++ This should be implemented more efficiently. It shouldn't cons a
;++ closure, and the cons cells used in the loops when using this could
;++ be reused.
(define (vectors-ref vectors i)
(map (lambda (v) (vector-ref v i)) vectors))
;;; --------------------
;;; Error checking
;;; Error signalling (not checking) is done in a way that tries to be
;;; as helpful to the person who gets the debugging prompt as possible.
;;; That said, error _checking_ tries to be as unredundant as possible.
;;; In argument checks, upon receiving an invalid argument, the
;;; checker procedure recursively calls itself, but in one of the
;;; arguments to itself is a call to ASSERTION-VIOLATION; this
;;; mechanism is used in the hopes that the user may be thrown into a
;;; debugger prompt, proceed with another value, and let it be checked
;;; again.
;;; Mike says:
;;; With ASSERTION-VIOLATION, of course, it doesn't currently work:
;;; something else is needed eventually.
;;; Type checking is pretty basic, but easily factored out and replaced
;;; with whatever your implementation's preferred type checking method
;;; is. I doubt there will be many other methods of index checking,
;;; though the index checkers might be better implemented natively.
;;; (CHECK-TYPE <type-predicate?> <value> <callee>) -> value
;;; Ensure that VALUE satisfies TYPE-PREDICATE?; if not, signal an
;;; error stating that VALUE did not satisfy TYPE-PREDICATE?, showing
;;; that this happened while calling CALLEE. Return VALUE if no
;;; error was signalled.
(define (check-type pred? value callee)
(if (pred? value)
value
;; Recur: when (or if) the user gets a debugger prompt, he can
;; proceed where the call to ERROR was with the correct value.
(check-type pred?
(assertion-violation callee "erroneous value"
pred? value)
callee)))
;;; (CHECK-INDEX <vector> <index> <callee>) -> index
;;; Ensure that INDEX is a valid index into VECTOR; if not, signal an
;;; error stating that it is not and that this happened in a call to
;;; CALLEE. Return INDEX when it is valid. (Note that this does NOT
;;; check that VECTOR is indeed a vector.)
(define (check-index vec index callee)
(let ((index (check-type integer? index callee)))
(cond ((< index 0)
(check-index vec
(assertion-violation callee
"vector index too low"
index vec)
callee))
((>= index (vector-length vec))
(check-index vec
(assertion-violation callee
"vector index too high"
index vec)
callee))
(else index))))
;;; (CHECK-INDICES <vector>
;;; <start> <start-name>
;;; <end> <end-name>
;;; <caller>) -> [start end]
;;; Ensure that START and END are valid bounds of a range within
;;; VECTOR; if not, signal an error stating that they are not, with
;;; the message being informative about what the argument names were
;;; called -- by using START-NAME & END-NAME --, and that it occurred
;;; while calling CALLEE. Also ensure that VEC is in fact a vector.
;;; Returns no useful value.
(define (check-indices vec start start-name end end-name callee)
(let ((lose (lambda things
(assertion-violation callee
"vector range out of bounds"
things vec start end)))
(start (check-type integer? start callee))
(end (check-type integer? end callee)))
(cond ((> start end)
;; I'm not sure how well this will work. The intent is that
;; the programmer tells the debugger to proceed with both a
;; new START & a new END by returning multiple values
;; somewhere.
(receive (new-start new-end)
(lose `(,end-name < ,start-name))
(check-indices vec
new-start start-name
new-end end-name
callee)))
((< start 0)
(check-indices vec
(lose `(,start-name < 0))
start-name
end end-name
callee))
((>= start (vector-length vec))
(check-indices vec
(lose `(,start-name > len)
`(len was ,(vector-length vec)))
start-name
end end-name
callee))
((> end (vector-length vec))
(check-indices vec
start start-name
(lose `(,end-name > len)
`(len was ,(vector-length vec)))
end-name
callee))
(else
(values start end)))))
;;; --------------------
;;; Internal routines
;;; These should all be integrated, native, or otherwise optimized --
;;; they're used a _lot_ --. All of the loops and LETs inside loops
;;; are lambda-lifted by hand, just so as not to cons closures in the
;;; loops. (If your compiler can do better than that if they're not
;;; lambda-lifted, then lambda-drop (?) them.)
;;; (VECTOR-PARSE-START+END <vector> <arguments>
;;; <start-name> <end-name>
;;; <callee>)
;;; -> [start end]
;;; Return two values, composing a valid range within VECTOR, as
;;; extracted from ARGUMENTS or defaulted from VECTOR -- 0 for START
;;; and the length of VECTOR for END --; START-NAME and END-NAME are
;;; purely for error checking.
(define (vector-parse-start+end vec args start-name end-name callee)
(let ((len (vector-length vec)))
(cond ((null? args)
(values 0 len))
((null? (cdr args))
(check-indices vec
(car args) start-name
len end-name
callee))
((null? (cddr args))
(check-indices vec
(car args) start-name
(cadr args) end-name
callee))
(else
(assertion-violation
callee
"too many arguments"
(cddr args))))))
(define-syntax let-vector-start+end
(syntax-rules ()
((let-vector-start+end ?callee ?vec ?args (?start ?end)
?body1 ?body2 ...)
(let ((?vec (check-type vector? ?vec '?callee)))
(receive (?start ?end)
(vector-parse-start+end ?vec ?args '?start '?end
'?callee)
?body1 ?body2 ...)))))
;;; (%SMALLEST-LENGTH <vector-list> <default-length> <callee>)
;;; -> exact, nonnegative integer
;;; Compute the smallest length of VECTOR-LIST. DEFAULT-LENGTH is
;;; the length that is returned if VECTOR-LIST is empty. Common use
;;; of this is in n-ary vector routines:
;;; (define (f vec . vectors)
;;; (let ((vec (check-type vector? vec 'f)))
;;; ...(%smallest-length vectors (vector-length vec) f)...))
;;; %SMALLEST-LENGTH takes care of the type checking -- which is what
;;; the CALLEE argument is for --; thus, the design is tuned for
;;; avoiding redundant type checks.
(define %smallest-length
(letrec ((loop (lambda (vector-list length callee)
(if (null? vector-list)
length
(loop (cdr vector-list)
(min (vector-length
(check-type vector?
(car vector-list)
callee))
length)
callee)))))
loop))
;;; (%VECTOR-COPY! <target> <tstart> <source> <sstart> <send>)
;;; Copy elements at locations SSTART to SEND from SOURCE to TARGET,
;;; starting at TSTART in TARGET.
;;;
;;; Optimize this! Probably with some combination of:
;;; - Force it to be integrated.
;;; - Let it use unsafe vector element dereferencing routines: bounds
;;; checking already happens outside of it. (Or use a compiler
;;; that figures this out, but Olin Shivers' PhD thesis seems to
;;; have been largely ignored in actual implementations...)
;;; - Implement it natively as a VM primitive: the VM can undoubtedly
;;; perform much faster than it can make Scheme perform, even with
;;; bounds checking.
;;; - Implement it in assembly: you _want_ the fine control that
;;; assembly can give you for this.
;;; I already lambda-lift it by hand, but you should be able to make it
;;; even better than that.
(define %vector-copy!
(letrec ((loop/l->r (lambda (target source send i j)
(cond ((< i send)
(vector-set! target j
(vector-ref source i))
(loop/l->r target source send
(+ i 1) (+ j 1))))))
(loop/r->l (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j
(vector-ref source i))
(loop/r->l target source sstart
(- i 1) (- j 1)))))))
(lambda (target tstart source sstart send)
(if (> sstart tstart) ; Make sure we don't copy over
; ourselves.
(loop/l->r target source send sstart tstart)
(loop/r->l target source sstart (- send 1)
(+ -1 tstart send (- sstart)))))))
;;; (%VECTOR-REVERSE-COPY! <target> <tstart> <source> <sstart> <send>)
;;; Copy elements from SSTART to SEND from SOURCE to TARGET, in the
;;; reverse order.
(define %vector-reverse-copy!
(letrec ((loop (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j (vector-ref source i))
(loop target source sstart
(- i 1)
(+ j 1)))))))
(lambda (target tstart source sstart send)
(loop target source sstart
(- send 1)
tstart))))
;;; (%VECTOR-REVERSE! <vector>)
(define %vector-reverse!
(letrec ((loop (lambda (vec i j)
(cond ((<= i j)
(let ((v (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j v)
(loop vec (+ i 1) (- j 1))))))))
(lambda (vec start end)
(loop vec start (- end 1)))))
;;; (%VECTOR-FOLD1 <kons> <knil> <vector>) -> knil'
;;; (KONS <index> <knil> <elt>) -> knil'
(define %vector-fold1
(letrec ((loop (lambda (kons knil len vec i)
(if (= i len)
knil
(loop kons
(kons i knil (vector-ref vec i))
len vec (+ i 1))))))
(lambda (kons knil len vec)
(loop kons knil len vec 0))))
;;; (%VECTOR-FOLD2+ <kons> <knil> <vector> ...) -> knil'
;;; (KONS <index> <knil> <elt> ...) -> knil'
(define %vector-fold2+
(letrec ((loop (lambda (kons knil len vectors i)
(if (= i len)
knil
(loop kons
(apply kons i knil
(vectors-ref vectors i))
len vectors (+ i 1))))))
(lambda (kons knil len vectors)
(loop kons knil len vectors 0))))
;;; (%VECTOR-MAP! <f> <target> <length> <vector>) -> target
;;; (F <index> <elt>) -> elt'
(define %vector-map1!
(letrec ((loop (lambda (f target vec i)
(if (zero? i)
target
(let ((j (- i 1)))
(vector-set! target j
(f j (vector-ref vec j)))
(loop f target vec j))))))
(lambda (f target vec len)
(loop f target vec len))))
;;; (%VECTOR-MAP2+! <f> <target> <vectors> <len>) -> target
;;; (F <index> <elt> ...) -> elt'
(define %vector-map2+!
(letrec ((loop (lambda (f target vectors i)
(if (zero? i)
target
(let ((j (- i 1)))
(vector-set! target j
(apply f j (vectors-ref vectors j)))
(loop f target vectors j))))))
(lambda (f target vectors len)
(loop f target vectors len))))
;;;;;;;;;;;;;;;;;;;;;;;; ***** vector-lib ***** ;;;;;;;;;;;;;;;;;;;;;;;
;;; --------------------
;;; Constructors
;;; (MAKE-VECTOR <size> [<fill>]) -> vector
;;; [R5RS] Create a vector of length LENGTH. If FILL is present,
;;; initialize each slot in the vector with it; if not, the vector's
;;; initial contents are unspecified.
;(define make-vector make-vector)
;;; (VECTOR <elt> ...) -> vector
;;; [R5RS] Create a vector containing ELEMENT ..., in order.
;(define vector vector)
;;; This ought to be able to be implemented much more efficiently -- if
;;; we have the number of arguments available to us, we can create the
;;; vector without using LENGTH to determine the number of elements it
;;; should have.
;(define (vector . elements) (list->vector elements))
;;; (VECTOR-UNFOLD <f> <length> <initial-seed> ...) -> vector
;;; (F <index> <seed> ...) -> [elt seed' ...]
;;; The fundamental vector constructor. Creates a vector whose
;;; length is LENGTH and iterates across each index K between 0 and
;;; LENGTH, applying F at each iteration to the current index and the
;;; current seeds to receive N+1 values: first, the element to put in
;;; the Kth slot and then N new seeds for the next iteration.
(define vector-unfold
(letrec ((tabulate! ; Special zero-seed case.
(lambda (f vec i len)
(cond ((< i len)
(vector-set! vec i (f i))
(tabulate! f vec (+ i 1) len)))))
(unfold1! ; Fast path for one seed.
(lambda (f vec i len seed)
(if (< i len)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (+ i 1) len new-seed)))))
(unfold2+! ; Slower variant for N seeds.
(lambda (f vec i len seeds)
(if (< i len)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (+ i 1) len new-seeds))))))
(lambda (f len . initial-seeds)
(let ((f (check-type procedure? f 'vector-unfold))
(len (check-type nonneg-int? len 'vector-unfold)))
(let ((vec (make-vector len)))
(cond ((null? initial-seeds)
(tabulate! f vec 0 len))
((null? (cdr initial-seeds))
(unfold1! f vec 0 len (car initial-seeds)))
(else
(unfold2+! f vec 0 len initial-seeds)))
vec)))))
;;; (VECTOR-UNFOLD-RIGHT <f> <length> <initial-seed> ...) -> vector
;;; (F <seed> ...) -> [seed' ...]
;;; Like VECTOR-UNFOLD, but it generates elements from LENGTH to 0
;;; (still exclusive with LENGTH and inclusive with 0), not 0 to
;;; LENGTH as with VECTOR-UNFOLD.
(define vector-unfold-right
(letrec ((tabulate!
(lambda (f vec i)
(cond ((>= i 0)
(vector-set! vec i (f i))
(tabulate! f vec (- i 1))))))
(unfold1!
(lambda (f vec i seed)
(if (>= i 0)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (- i 1) new-seed)))))
(unfold2+!
(lambda (f vec i seeds)
(if (>= i 0)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (- i 1) new-seeds))))))
(lambda (f len . initial-seeds)
(let ((f (check-type procedure? f 'vector-unfold-right))
(len (check-type nonneg-int? len 'vector-unfold-right)))
(let ((vec (make-vector len))
(i (- len 1)))
(cond ((null? initial-seeds)
(tabulate! f vec i))
((null? (cdr initial-seeds))
(unfold1! f vec i (car initial-seeds)))
(else
(unfold2+! f vec i initial-seeds)))
vec)))))
;;; (VECTOR-COPY <vector> [<start> <end> <fill>]) -> vector
;;; Create a newly allocated vector containing the elements from the
;;; range [START,END) in VECTOR. START defaults to 0; END defaults
;;; to the length of VECTOR. END may be greater than the length of
;;; VECTOR, in which case the vector is enlarged; if FILL is passed,
;;; the new locations from which there is no respective element in
;;; VECTOR are filled with FILL.
(define (vector-copy vec . args)
(let ((vec (check-type vector? vec 'vector-copy)))
;; We can't use LET-VECTOR-START+END, because we have one more
;; argument, and we want finer control, too.
;;
;; Olin's implementation of LET*-OPTIONALS would prove useful here:
;; the built-in argument-checks-as-you-go-along produces almost
;; _exactly_ the same code as VECTOR-COPY:PARSE-ARGS.
(receive (start end fill)
(vector-copy:parse-args vec args)
(let ((new-vector (make-vector (- end start) fill)))
(%vector-copy! new-vector 0
vec start
(if (> end (vector-length vec))
(vector-length vec)
end))
new-vector))))
;;; Auxiliary for VECTOR-COPY.
(define (vector-copy:parse-args vec args)
(define (parse-args start end n fill)
(let ((start (check-type nonneg-int? start vector-copy))
(end (check-type nonneg-int? end vector-copy)))
(cond ((and (<= 0 start end)
(<= start n))
(values start end fill))
(else
(assertion-violation
'vector-copy
"start bound out of bounds"
start end vec)))))
(let ((n (vector-length vec)))
(cond ((null? args)
(parse-args 0 n n (unspecified-value)))
((null? (cdr args))
(parse-args (car args) n n (unspecified-value)))
((null? (cddr args))
(parse-args (car args) (cadr args) n (unspecified-value)))
((null? (cdddr args))
(parse-args (car args) (cadr args) n (caddr args)))
(else
(apply assertion-violation 'vector-copy
"too many arguments"
(cdddr args))))))
;;; (VECTOR-REVERSE-COPY <vector> [<start> <end>]) -> vector
;;; Create a newly allocated vector whose elements are the reversed
;;; sequence of elements between START and END in VECTOR. START's
;;; default is 0; END's default is the length of VECTOR.
(define (vector-reverse-copy vec . maybe-start+end)
(let-vector-start+end vector-reverse-copy vec maybe-start+end
(start end)
(let ((new (make-vector (- end start))))
(%vector-reverse-copy! new 0 vec start end)
new)))
;;; (VECTOR-APPEND <vector> ...) -> vector
;;; Append VECTOR ... into a newly allocated vector and return that
;;; new vector.
(define (vector-append . vectors)
(vector-concatenate:aux vectors 'vector-append))
;;; (VECTOR-CONCATENATE <vector-list>) -> vector
;;; Concatenate the vectors in VECTOR-LIST. This is equivalent to
;;; (apply vector-append VECTOR-LIST)
;;; but VECTOR-APPEND tends to be implemented in terms of
;;; VECTOR-CONCATENATE, and some Schemes bork when the list to apply
;;; a function to is too long.
;;;
;;; Actually, they're both implemented in terms of an internal routine.
(define (vector-concatenate vector-list)
(vector-concatenate:aux vector-list 'vector-concatenate))
;;; Auxiliary for VECTOR-APPEND and VECTOR-CONCATENATE
(define vector-concatenate:aux
(letrec ((compute-length
(lambda (vectors len callee)
(if (null? vectors)
len
(let ((vec (check-type vector? (car vectors)
callee)))
(compute-length (cdr vectors)
(+ (vector-length vec) len)
callee)))))
(concatenate!
(lambda (vectors target to)
(if (null? vectors)
target
(let* ((vec1 (car vectors))
(len (vector-length vec1)))
(%vector-copy! target to vec1 0 len)
(concatenate! (cdr vectors) target
(+ to len)))))))
(lambda (vectors callee)
(cond ((null? vectors) ;+++
(make-vector 0))
((null? (cdr vectors)) ;+++
;; Blech, we still have to allocate a new one.
(let* ((vec (check-type vector? (car vectors) callee))
(len (vector-length vec))
(new (make-vector len)))
(%vector-copy! new 0 vec 0 len)
new))
(else
(let ((new-vector
(make-vector (compute-length vectors 0 callee))))
(concatenate! vectors new-vector 0)
new-vector))))))
;;; --------------------
;;; Predicates
;;; (VECTOR? <value>) -> boolean
;;; [R5RS] Return #T if VALUE is a vector and #F if not.
;(define vector? vector?)
;;; (VECTOR-EMPTY? <vector>) -> boolean
;;; Return #T if VECTOR has zero elements in it, i.e. VECTOR's length
;;; is 0, and #F if not.
(define (vector-empty? vec)
(let ((vec (check-type vector? vec 'vector-empty?)))
(zero? (vector-length vec))))
;;; (VECTOR= <elt=?> <vector> ...) -> boolean
;;; (ELT=? <value> <value>) -> boolean
;;; Determine vector equality generalized across element comparators.
;;; Vectors A and B are equal iff their lengths are the same and for
;;; each respective elements E_a and E_b (element=? E_a E_b) returns
;;; a true value. ELT=? is always applied to two arguments. Element
;;; comparison must be consistent wtih EQ?; that is, if (eq? E_a E_b)
;;; results in a true value, then (ELEMENT=? E_a E_b) must result in a
;;; true value. This may be exploited to avoid multiple unnecessary
;;; element comparisons. (This implementation does, but does not deal
;;; with the situation that ELEMENT=? is EQ? to avoid more unnecessary
;;; comparisons, but I believe this optimization is probably fairly
;;; insignificant.)
;;;
;;; If the number of vector arguments is zero or one, then #T is
;;; automatically returned. If there are N vector arguments,
;;; VECTOR_1 VECTOR_2 ... VECTOR_N, then VECTOR_1 & VECTOR_2 are
;;; compared; if they are equal, the vectors VECTOR_2 ... VECTOR_N
;;; are compared. The precise order in which ELT=? is applied is not
;;; specified.
(define (vector= elt=? . vectors)
(let ((elt=? (check-type procedure? elt=? 'vector=)))
(cond ((null? vectors)
#t)
((null? (cdr vectors))
(check-type vector? (car vectors) 'vector=)
#t)
(else
(let loop ((vecs vectors))
(let ((vec1 (check-type vector? (car vecs) 'vector=))
(vec2+ (cdr vecs)))
(or (null? vec2+)
(and (binary-vector= elt=? vec1 (car vec2+))
(loop vec2+)))))))))
(define (binary-vector= elt=? vector-a vector-b)
(or (eq? vector-a vector-b) ;+++
(let ((length-a (vector-length vector-a))
(length-b (vector-length vector-b)))
(letrec ((loop (lambda (i)
(or (= i length-a)
(and (< i length-b)
(test (vector-ref vector-a i)
(vector-ref vector-b i)
i)))))
(test (lambda (elt-a elt-b i)
(and (or (eq? elt-a elt-b) ;+++
(elt=? elt-a elt-b))
(loop (+ i 1))))))
(and (= length-a length-b)
(loop 0))))))
;;; --------------------
;;; Selectors
;;; (VECTOR-REF <vector> <index>) -> value
;;; [R5RS] Return the value that the location in VECTOR at INDEX is
;;; mapped to in the store.
;(define vector-ref vector-ref)
;;; (VECTOR-LENGTH <vector>) -> exact, nonnegative integer
;;; [R5RS] Return the length of VECTOR.
;(define vector-length vector-length)
;;; --------------------
;;; Iteration
;;; (VECTOR-FOLD <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors -> N+1 args
;;; The fundamental vector iterator. KONS is iterated over each
;;; index in all of the vectors in parallel, stopping at the end of
;;; the shortest; KONS is applied to an argument list of (list I
;;; STATE (vector-ref VEC I) ...), where STATE is the current state
;;; value -- the state value begins with KNIL and becomes whatever
;;; KONS returned at the respective iteration --, and I is the
;;; current index in the iteration. The iteration is strictly left-
;;; to-right.
;;; (vector-fold KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_1) E_2) ... E_N-1) E_N)
(define (vector-fold kons knil vec . vectors)
(let ((kons (check-type procedure? kons 'vector-fold))
(vec (check-type vector? vec 'vector-fold)))
(if (null? vectors)
(%vector-fold1 kons knil (vector-length vec) vec)
(%vector-fold2+ kons knil
(%smallest-length vectors
(vector-length vec)
'vector-fold)
(cons vec vectors)))))
;;; (VECTOR-FOLD-RIGHT <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors => N+1 args
;;; The fundamental vector recursor. Iterates in parallel across
;;; VECTOR ... right to left, applying KONS to the elements and the
;;; current state value; the state value becomes what KONS returns
;;; at each next iteration. KNIL is the initial state value.
;;; (vector-fold-right KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_N) E_N-1) ... E_2) E_1)
;;;
;;; Not implemented in terms of a more primitive operations that might
;;; called %VECTOR-FOLD-RIGHT due to the fact that it wouldn't be very
;;; useful elsewhere.
(define vector-fold-right
(letrec ((loop1 (lambda (kons knil vec i)
(if (negative? i)
knil
(loop1 kons (kons i knil (vector-ref vec i))
vec
(- i 1)))))
(loop2+ (lambda (kons knil vectors i)
(if (negative? i)
knil
(loop2+ kons
(apply kons i knil
(vectors-ref vectors i))
vectors
(- i 1))))))
(lambda (kons knil vec . vectors)
(let ((kons (check-type procedure? kons 'vector-fold-right))
(vec (check-type vector? vec 'vector-fold-right)))
(if (null? vectors)
(loop1 kons knil vec (- (vector-length vec) 1))
(loop2+ kons knil (cons vec vectors)
(- (%smallest-length vectors
(vector-length vec)
'vector-fold-right)
1)))))))
;;; (VECTOR-MAP <f> <vector> ...) -> vector
;;; (F <elt> ...) -> value ; N vectors -> N args
;;; Constructs a new vector of the shortest length of the vector
;;; arguments. Each element at index I of the new vector is mapped
;;; from the old vectors by (F I (vector-ref VECTOR I) ...). The
;;; dynamic order of application of F is unspecified.
(define (vector-map f vec . vectors)
(let ((f (check-type procedure? f 'vector-map))
(vec (check-type vector? vec 'vector-map)))
(if (null? vectors)
(let ((len (vector-length vec)))
(%vector-map1! f (make-vector len) vec len))
(let ((len (%smallest-length vectors
(vector-length vec)
'vector-map)))
(%vector-map2+! f (make-vector len) (cons vec vectors)
len)))))
;;; (VECTOR-MAP! <f> <vector> ...) -> unspecified
;;; (F <elt> ...) -> element' ; N vectors -> N args
;;; Similar to VECTOR-MAP, but rather than mapping the new elements
;;; into a new vector, the new mapped elements are destructively
;;; inserted into the first vector. Again, the dynamic order of
;;; application of F is unspecified, so it is dangerous for F to
;;; manipulate the first VECTOR.
(define (vector-map! f vec . vectors)
(let ((f (check-type procedure? f 'vector-map!))
(vec (check-type vector? vec 'vector-map!)))
(if (null? vectors)
(%vector-map1! f vec vec (vector-length vec))
(%vector-map2+! f vec (cons vec vectors)
(%smallest-length vectors
(vector-length vec)
'vector-map!)))
(unspecified-value)))
;;; (VECTOR-FOR-EACH <f> <vector> ...) -> unspecified
;;; (F <elt> ...) ; N vectors -> N args
;;; Simple vector iterator: applies F to each index in the range [0,
;;; LENGTH), where LENGTH is the length of the smallest vector
;;; argument passed, and the respective element at that index. In
;;; contrast with VECTOR-MAP, F is reliably applied to each
;;; subsequent elements, starting at index 0 from left to right, in
;;; the vectors.
(define vector-for-each
(letrec ((for-each1
(lambda (f vec i len)
(cond ((< i len)
(f i (vector-ref vec i))
(for-each1 f vec (+ i 1) len)))))
(for-each2+
(lambda (f vecs i len)
(cond ((< i len)
(apply f i (vectors-ref vecs i))
(for-each2+ f vecs (+ i 1) len))))))
(lambda (f vec . vectors)
(let ((f (check-type procedure? f 'vector-for-each))
(vec (check-type vector? vec 'vector-for-each)))
(if (null? vectors)
(for-each1 f vec 0 (vector-length vec))
(for-each2+ f (cons vec vectors) 0
(%smallest-length vectors
(vector-length vec)
'vector-for-each)))))))
;;; (VECTOR-COUNT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer
;;; (PREDICATE? <index> <value> ...) ; N vectors -> N+1 args
;;; PREDICATE? is applied element-wise to the elements of VECTOR ...,
;;; and a count is tallied of the number of elements for which a
;;; true value is produced by PREDICATE?. This count is returned.
(define (vector-count pred? vec . vectors)
(let ((pred? (check-type procedure? pred? 'vector-count))
(vec (check-type vector? vec 'vector-count)))
(if (null? vectors)
(%vector-fold1 (lambda (index count elt)
(if (pred? index elt)
(+ count 1)
count))
0
(vector-length vec)
vec)
(%vector-fold2+ (lambda (index count . elts)
(if (apply pred? index elts)
(+ count 1)
count))
0
(%smallest-length vectors
(vector-length vec)
'vector-count)
(cons vec vectors)))))
;;; --------------------
;;; Searching
;;; (VECTOR-INDEX <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Search left-to-right across VECTOR ... in parallel, returning the
;;; index of the first set of values VALUE ... such that (PREDICATE?
;;; VALUE ...) returns a true value; if no such set of elements is
;;; reached, return #F.
(define (vector-index pred? vec . vectors)
(vector-index/skip pred? vec vectors 'vector-index))
;;; (VECTOR-SKIP <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; (vector-index (lambda elts (not (apply PREDICATE? elts)))
;;; VECTOR ...)
;;; Like VECTOR-INDEX, but find the index of the first set of values
;;; that do _not_ satisfy PREDICATE?.
(define (vector-skip pred? vec . vectors)
(vector-index/skip (lambda elts (not (apply pred? elts)))
vec vectors
'vector-skip))
;;; Auxiliary for VECTOR-INDEX & VECTOR-SKIP
(define vector-index/skip
(letrec ((loop1 (lambda (pred? vec len i)
(cond ((= i len) #f)
((pred? (vector-ref vec i)) i)
(else (loop1 pred? vec len (+ i 1))))))
(loop2+ (lambda (pred? vectors len i)
(cond ((= i len) #f)
((apply pred? (vectors-ref vectors i)) i)
(else (loop2+ pred? vectors len
(+ i 1)))))))
(lambda (pred? vec vectors callee)
(let ((pred? (check-type procedure? pred? callee))
(vec (check-type vector? vec callee)))
(if (null? vectors)
(loop1 pred? vec (vector-length vec) 0)
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec)
callee)
0))))))
;;; (VECTOR-INDEX-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-INDEX.
(define (vector-index-right pred? vec . vectors)
(vector-index/skip-right pred? vec vectors 'vector-index-right))
;;; (VECTOR-SKIP-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-SKIP.
(define (vector-skip-right pred? vec . vectors)
(vector-index/skip-right (lambda elts (not (apply pred? elts)))
vec vectors
'vector-index-right))
(define vector-index/skip-right
(letrec ((loop1 (lambda (pred? vec i)
(cond ((negative? i) #f)
((pred? (vector-ref vec i)) i)
(else (loop1 pred? vec (- i 1))))))
(loop2+ (lambda (pred? vectors i)
(cond ((negative? i) #f)
((apply pred? (vectors-ref vectors i)) i)
(else (loop2+ pred? vectors (- i 1)))))))
(lambda (pred? vec vectors callee)
(let ((pred? (check-type procedure? pred? callee))
(vec (check-type vector? vec callee)))
(if (null? vectors)
(loop1 pred? vec (- (vector-length vec) 1))
(loop2+ pred? (cons vec vectors)
(- (%smallest-length vectors
(vector-length vec)
callee)
1)))))))
;;; (VECTOR-BINARY-SEARCH <vector> <value> <cmp> [<start> <end>])
;;; -> exact, nonnegative integer or #F
;;; (CMP <value1> <value2>) -> integer
;;; positive -> VALUE1 > VALUE2
;;; zero -> VALUE1 = VALUE2
;;; negative -> VALUE1 < VALUE2
;;; Perform a binary search through VECTOR for VALUE, comparing each
;;; element to VALUE with CMP.
(define (vector-binary-search vec value cmp . maybe-start+end)
(let ((cmp (check-type procedure? cmp 'vector-binary-search)))
(let-vector-start+end vector-binary-search vec maybe-start+end
(start end)
(let loop ((start start) (end end) (j #f))
(let ((i (quotient (+ start end) 2)))
(if (or (= start end) (and j (= i j)))
#f
(let ((comparison
(check-type integer?
(cmp (vector-ref vec i) value)
'vector-binary-search)))
(cond ((zero? comparison) i)
((positive? comparison) (loop start i i))
(else (loop i end i))))))))))
;;; (VECTOR-ANY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel element in each VECTOR ...; if PRED?
;;; should ever return a true value, immediately stop and return that
;;; value; otherwise, when the shortest vector runs out, return #F.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-any
(letrec ((loop1 (lambda (pred? vec i len len-1)
(and (not (= i len))
(if (= i len-1)
(pred? (vector-ref vec i))
(or (pred? (vector-ref vec i))
(loop1 pred? vec (+ i 1)
len len-1))))))
(loop2+ (lambda (pred? vectors i len len-1)
(and (not (= i len))
(if (= i len-1)
(apply pred? (vectors-ref vectors i))
(or (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (+ i 1)
len len-1)))))))
(lambda (pred? vec . vectors)
(let ((pred? (check-type procedure? pred? 'vector-any))
(vec (check-type vector? vec 'vector-any)))
(if (null? vectors)
(let ((len (vector-length vec)))
(loop1 pred? vec 0 len (- len 1)))
(let ((len (%smallest-length vectors
(vector-length vec)
'vector-any)))
(loop2+ pred? (cons vec vectors) 0 len (- len 1))))))))
;;; (VECTOR-EVERY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel value in each VECTOR ...; if PRED?
;;; should ever return #F, immediately stop and return #F; otherwise,
;;; if PRED? should return a true value for each element, stopping at
;;; the end of the shortest vector, return the last value that PRED?
;;; returned. In the case that there is an empty vector, return #T.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-every
(letrec ((loop1 (lambda (pred? vec i len len-1)
(or (= i len)
(if (= i len-1)
(pred? (vector-ref vec i))
(and (pred? (vector-ref vec i))
(loop1 pred? vec (+ i 1)
len len-1))))))
(loop2+ (lambda (pred? vectors i len len-1)
(or (= i len)
(if (= i len-1)
(apply pred? (vectors-ref vectors i))
(and (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (+ i 1)
len len-1)))))))
(lambda (pred? vec . vectors)
(let ((pred? (check-type procedure? pred? 'vector-every))
(vec (check-type vector? vec 'vector-every)))
(if (null? vectors)
(let ((len (vector-length vec)))
(loop1 pred? vec 0 len (- len 1)))
(let ((len (%smallest-length vectors
(vector-length vec)
'vector-every)))
(loop2+ pred? (cons vec vectors) 0 len (- len 1))))))))
;;; --------------------
;;; Mutators
;;; (VECTOR-SET! <vector> <index> <value>) -> unspecified
;;; [R5RS] Assign the location at INDEX in VECTOR to VALUE.
;(define vector-set! vector-set!)
;;; (VECTOR-SWAP! <vector> <index1> <index2>) -> unspecified
;;; Swap the values in the locations at INDEX1 and INDEX2.
(define (vector-swap! vec i j)
(let ((vec (check-type vector? vec 'vector-swap!)))
(let ((i (check-index vec i 'vector-swap!))
(j (check-index vec j 'vector-swap!)))
(let ((x (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j x)))))
;;; (VECTOR-FILL! <vector> <value> [<start> <end>]) -> unspecified
;;; [R5RS+] Fill the locations in VECTOR between START, whose default
;;; is 0, and END, whose default is the length of VECTOR, with VALUE.
;;;
;;; This one can probably be made really fast natively.
(define vector-fill!
; (let ((%vector-fill! vector-fill!)) ; Take the native one, under
; the assumption that it's
; faster, so we can use it if
; there are no optional
; arguments.
(lambda (vec value . maybe-start+end)
(if (null? maybe-start+end)
(%vector-fill! vec value) ;+++
(let-vector-start+end vector-fill! vec maybe-start+end
(start end)
(do ((i start (+ i 1)))
((= i end))
(vector-set! vec i value))))))
; )
;;; (VECTOR-COPY! <target> <tstart> <source> [<sstart> <send>])
;;; -> unspecified
;;; Copy the values in the locations in [SSTART,SEND) from SOURCE to
;;; to TARGET, starting at TSTART in TARGET.
(define (vector-copy! target tstart source . maybe-sstart+send)
(define (doit! sstart send source-length)
(let ((tstart (check-type nonneg-int? tstart vector-copy!))
(sstart (check-type nonneg-int? sstart vector-copy!))
(send (check-type nonneg-int? send vector-copy!)))
(cond ((and (<= 0 sstart send source-length)
(<= (+ tstart (- send sstart)) (vector-length target)))
(%vector-copy! target tstart source sstart send))
(else
(assertion-violation 'vector-copy!
"vector range out of bounds"
target
(vector-length target)
tstart
source source-length
sstart send)))))
(let ((n (vector-length source)))
(cond ((null? maybe-sstart+send)
(doit! 0 n n))
((null? (cdr maybe-sstart+send))
(doit! (car maybe-sstart+send) n n))
((null? (cddr maybe-sstart+send))
(doit! (car maybe-sstart+send) (cadr maybe-sstart+send) n))
(else
(apply assertion-violation 'vector-copy!
(cddr maybe-sstart+send))))))
;;; (VECTOR-REVERSE-COPY! <target> <tstart> <source> [<sstart> <send>])
(define (vector-reverse-copy! target tstart source . maybe-sstart+send)
(define (doit! sstart send source-length)
(let ((tstart (check-type nonneg-int? tstart vector-reverse-copy!))
(sstart (check-type nonneg-int? sstart vector-reverse-copy!))
(send (check-type nonneg-int? send vector-reverse-copy!)))
(cond ((and (eq? target source)
(or (between? sstart tstart send)
(between? tstart sstart
(+ tstart (- send sstart)))))
(assertion-violation 'vector-reverse-copy!
"vector range for self-copying overlaps"
target tstart sstart send))
((and (<= 0 sstart send source-length)
(<= (+ tstart (- send sstart)) (vector-length target)))
(%vector-reverse-copy! target tstart source sstart send))
(else
(assertion-violation 'vector-reverse-copy!
"vector range out of bounds"
target (vector-length target)
tstart
source source-length
sstart send)))))
(let ((n (vector-length source)))
(cond ((null? maybe-sstart+send)
(doit! 0 n n))
((null? (cdr maybe-sstart+send))
(doit! (car maybe-sstart+send) n n))
((null? (cddr maybe-sstart+send))
(doit! (car maybe-sstart+send) (cadr maybe-sstart+send) n))
(else
(apply assertion-violation 'vector-reverse-copy!
(cddr maybe-sstart+send))))))
;;; (VECTOR-REVERSE! <vector> [<start> <end>]) -> unspecified
;;; Destructively reverse the contents of the sequence of locations
;;; in VECTOR between START, whose default is 0, and END, whose
;;; default is the length of VECTOR.
(define (vector-reverse! vec . start+end)
(let-vector-start+end vector-reverse! vec start+end
(start end)
(%vector-reverse! vec start end)))
;;; --------------------
;;; Conversion
;;; (VECTOR->LIST <vector> [<start> <end>]) -> list
;;; [R5RS+] Produce a list containing the elements in the locations
;;; between START, whose default is 0, and END, whose default is the
;;; length of VECTOR, from VECTOR.
(define vector->list
; (let ((%vector->list vector->list))
(lambda (vec . maybe-start+end)
(if (null? maybe-start+end) ; Oughta use CASE-LAMBDA.
(%vector->list vec) ;+++
(let-vector-start+end vector->list vec maybe-start+end
(start end)
;(unfold (lambda (i) ; No SRFI 1.
; (< i start))
; (lambda (i) (vector-ref vec i))
; (lambda (i) (- i 1))
; (- end 1))
(do ((i (- end 1) (- i 1))
(result '() (cons (vector-ref vec i) result)))
((< i start) result))))))
; )
;;; (REVERSE-VECTOR->LIST <vector> [<start> <end>]) -> list
;;; Produce a list containing the elements in the locations between
;;; START, whose default is 0, and END, whose default is the length
;;; of VECTOR, from VECTOR, in reverse order.
(define (reverse-vector->list vec . maybe-start+end)
(let-vector-start+end reverse-vector->list vec maybe-start+end
(start end)
;(unfold (lambda (i) (= i end)) ; No SRFI 1.
; (lambda (i) (vector-ref vec i))
; (lambda (i) (+ i 1))
; start)
(do ((i start (+ i 1))
(result '() (cons (vector-ref vec i) result)))
((= i end) result))))
;;; (LIST->VECTOR <list> [<start> <end>]) -> vector
;;; [R5RS+] Produce a vector containing the elements in LIST, which
;;; must be a proper list, between START, whose default is 0, & END,
;;; whose default is the length of LIST. It is suggested that if the
;;; length of LIST is known in advance, the START and END arguments
;;; be passed, so that LIST->VECTOR need not call LENGTH to determine
;;; the the length.
;;;
;;; This implementation diverges on circular lists, unless LENGTH fails
;;; and causes - to fail as well. Given a LENGTH* that computes the
;;; length of a list's cycle, this wouldn't diverge, and would work
;;; great for circular lists.
(define list->vector
; (let ((%list->vector list->vector))
(lambda (lst . maybe-start+end)
;; Checking the type of a proper list is expensive, so we do it
;; amortizedly, or let %LIST->VECTOR or LIST-TAIL do it.
(if (null? maybe-start+end) ; Oughta use CASE-LAMBDA.
(%list->vector lst) ;+++
;; We can't use LET-VECTOR-START+END, because we're using the
;; bounds of a _list_, not a vector.
(let*-optionals maybe-start+end
((start 0)
(end (length lst))) ; Ugh -- LENGTH
(let ((start (check-type nonneg-int? start 'list->vector))
(end (check-type nonneg-int? end 'list->vector)))
((lambda (f)
(vector-unfold f (- end start) (list-tail lst start)))
(lambda (index l)
(cond ((null? l)
(assertion-violation 'list->vector
"list was too short"
lst end list->vector))
((pair? l)
(values (car l) (cdr l)))
(else
;; Make this look as much like what CHECK-TYPE
;; would report as possible.
(assertion-violation 'list->vector
"erroneous value"
;; We want SRFI 1's PROPER-LIST?, but it
;; would be a waste to link all of SRFI
;; 1 to this module for only the single
;; function PROPER-LIST?.
lst))))))))))
; )
;;; (REVERSE-LIST->VECTOR <list> [<start> <end>]) -> vector
;;; Produce a vector containing the elements in LIST, which must be a
;;; proper list, between START, whose default is 0, and END, whose
;;; default is the length of LIST, in reverse order. It is suggested
;;; that if the length of LIST is known in advance, the START and END
;;; arguments be passed, so that REVERSE-LIST->VECTOR need not call
;;; LENGTH to determine the the length.
;;;
;;; This also diverges on circular lists unless, again, LENGTH returns
;;; something that makes - bork.
(define (reverse-list->vector lst . maybe-start+end)
(let*-optionals maybe-start+end
((start 0)
(end (length lst))) ; Ugh -- LENGTH
(let ((start (check-type nonneg-int? start 'reverse-list->vector))
(end (check-type nonneg-int? end 'reverse-list->vector)))
((lambda (f)
(vector-unfold-right f (- end start) (list-tail lst start)))
(lambda (index l)
(cond ((null? l)
(assertion-violation 'reverse-list->vector
"list too short"
lst end reverse-list->vector))
((pair? l)
(values (car l) (cdr l)))
(else
(assertion-violation 'reverse-list->vector
"erroneous value"
lst))))))))
|