This file is indexed.

/usr/share/scheme48-1.9/srfi/srfi-27.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
; MODULE DEFINITION FOR SRFI-27, C/SCHEME-IMPLEMENTATION
; ======================================================
; 

; Copyright (C) Sebastian Egner (2002). All Rights Reserved.
; 
; Permission is hereby granted, free of charge, to any person
; obtaining a copy of this software and associated documentation
; files (the "Software"), to deal in the Software without
; restriction, including without limitation the rights to use, copy,
; modify, merge, publish, distribute, sublicense, and/or sell copies
; of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
; 
; The above copyright notice and this permission notice shall be
; included in all copies or substantial portions of the Software.
; 
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
; BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
; ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
; CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
; SOFTWARE.

; Sebastian.Egner@philips.com, Mar-2002, in Scheme 48 0.57
;
; This file contains the top-level definition for the C-code
; implementation of SRFI-27 for the Scheme 48 0.57 system. 
;
; 1. The core generator is implemented in 'mrg32k3a-b.c'.
; 2. The generic parts of the interface are in 'mrg32k3a.scm'.
;     (they have now been merged into this file)
; 3. The non-generic parts (record type, time, error, C-bindings) are here.
;
; creating the module:
;   copy mrg32k3a-b.c into $SCHEME48/c/srfi-27/mrg32k3a-b.c
;   edit $SCHEME48/Makefile.in
;      add c/srfi-27/mrg32k3a-b.o to EXTERNAL_OBJECTS
;      add mrg32k3a_init to EXTERNAL_INITIALIZERS
;      add the make line c/srfi-27/mrg32k3a-b.o: c/scheme48.h
;   cd $SCHEME48
;   make clean
;   configure
;   make
;   cd $SRFI27
;   ,config ,load srfi-27-b.scm
;
; loading the module, once created:
;   ,open srfi-27
;
; history of this file:
;   SE, 22-Mar-2002: initial version
;   SE, 25-Mar-2002: initial version
;   MG, September 2002: merged in mrg32k2a.scm, move package definitons to
;                       more-packages.scm, renamed from srfi-27-b.scm to srfi-27.scm

(import-dynamic-externals "=scheme48external/srfi-27")

(define-record-type :random-source
  (:random-source-make
   state-ref
   state-set!
   randomize!
   pseudo-randomize!
   make-integers
   make-reals)
  :random-source?
  (state-ref :random-source-state-ref)
  (state-set! :random-source-state-set!)
  (randomize! :random-source-randomize!)
  (pseudo-randomize! :random-source-pseudo-randomize!)
  (make-integers :random-source-make-integers)
  (make-reals :random-source-make-reals))


(define (:random-source-current-time)
  (current-time))

;; interface to core generator

(import-lambda-definition-2 mrg32k3a-pack-state1 (state))
(import-lambda-definition-2 mrg32k3a-unpack-state1 (state))
(import-lambda-definition-2 mrg32k3a-random-range ())
(import-lambda-definition-2 mrg32k3a-random-integer (state range))
(import-lambda-definition-2 mrg32k3a-random-real (state))
(import-lambda-definition-2 current-time ())

(define (mrg32k3a-pack-state state)
  (mrg32k3a-pack-state1
   (list->vector
    (apply append 
	   (map (lambda (x) 
		  (list (modulo x 65536) 
			(quotient x 65536))) 
		(vector->list state))))))

(define (mrg32k3a-unpack-state state)
  (let ((s (mrg32k3a-unpack-state1 state)) (w 65536))
    (vector
     (+ (vector-ref s  0) (* (vector-ref s  1) w))
     (+ (vector-ref s  2) (* (vector-ref s  3) w))
     (+ (vector-ref s  4) (* (vector-ref s  5) w))
     (+ (vector-ref s  6) (* (vector-ref s  7) w))
     (+ (vector-ref s  8) (* (vector-ref s  9) w))
     (+ (vector-ref s 10) (* (vector-ref s 11) w)))))

; Start of former file mrg32k3a.scm
;
; GENERIC PART OF MRG32k3a-GENERATOR FOR SRFI-27
; ==============================================
;
; Sebastian.Egner@philips.com, 2002.
;
; This is the generic R5RS-part of the implementation of the MRG32k3a
; generator to be used in SRFI-27. It is based on a separate implementation
; of the core generator (presumably in native code) and on code to
; provide essential functionality not available in R5RS (see below).
;
; compliance:
;   Scheme R5RS with integer covering at least {-2^53..2^53-1}.
;   In addition,
;     SRFI-23: error
;
; history of this file:
;   SE, 22-Mar-2002: refactored from earlier versions
;   SE, 25-Mar-2002: pack/unpack need not allocate
;   SE, 27-Mar-2002: changed interface to core generator
;   SE, 10-Apr-2002: updated spec of mrg32k3a-random-integer

; Generator
; =========
;
; Pierre L'Ecuyer's MRG32k3a generator is a Combined Multiple Recursive 
; Generator. It produces the sequence {(x[1,n] - x[2,n]) mod m1 : n} 
; defined by the two recursive generators
;
;   x[1,n] = (               a12 x[1,n-2] + a13 x[1,n-3]) mod m1,
;   x[2,n] = (a21 x[2,n-1] +                a23 x[2,n-3]) mod m2,
;
; where the constants are
;   m1       = 4294967087 = 2^32 - 209    modulus of 1st component
;   m2       = 4294944443 = 2^32 - 22853  modulus of 2nd component
;   a12      =  1403580                   recursion coefficients
;   a13      =  -810728
;   a21      =   527612
;   a23      = -1370589
;
; The generator passes all tests of G. Marsaglia's Diehard testsuite.
; Its period is (m1^3 - 1)(m2^3 - 1)/2 which is nearly 2^191.
; L'Ecuyer reports: "This generator is well-behaved in all dimensions
; up to at least 45: ..." [with respect to the spectral test, SE].
;
; The period is maximal for all values of the seed as long as the
; state of both recursive generators is not entirely zero.
;
; As the successor state is a linear combination of previous
; states, it is possible to advance the generator by more than one
; iteration by applying a linear transformation. The following
; publication provides detailed information on how to do that:
;
;    [1] P. L'Ecuyer, R. Simard, E. J. Chen, W. D. Kelton:
;        An Object-Oriented Random-Number Package With Many Long 
;        Streams and Substreams. 2001.
;        To appear in Operations Research.
;
; Arithmetics
; ===========
;
; The MRG32k3a generator produces values in {0..2^32-209-1}. All 
; subexpressions of the actual generator fit into {-2^53..2^53-1}. 
; The code below assumes that Scheme's "integer" covers this range.
; In addition, it is assumed that floating point literals can be
; read and there is some arithmetics with inexact numbers.
;
; However, for advancing the state of the generator by more than
; one step at a time, the full range {0..2^32-209-1} is needed.


; Required: Backbone Generator
; ============================
;
; At this point in the code, the following procedures are assumed
; to be defined to execute the core generator:
;
;   (mrg32k3a-pack-state unpacked-state) -> packed-state
;   (mrg32k3a-unpack-state packed-state) -> unpacked-state
;      pack/unpack a state of the generator. The core generator works
;      on packed states, passed as an explicit argument, only. This
;      allows native code implementations to store their state in a
;      suitable form. Unpacked states are #(x10 x11 x12 x20 x21 x22) 
;      with integer x_ij. Pack/unpack need not allocate new objects
;      in case packed and unpacked states are identical.
;
;   (mrg32k3a-random-range) -> m-max
;   (mrg32k3a-random-integer packed-state range) -> x in {0..range-1}
;      advance the state of the generator and return the next random
;      range-limited integer. 
;        Note that the state is not necessarily advanced by just one 
;      step because we use the rejection method to avoid any problems 
;      with distribution anomalies.
;        The range argument must be an exact integer in {1..m-max}.
;      It can be assumed that range is a fixnum if the Scheme system
;      has such a number representation.
;
;   (mrg32k3a-random-real packed-state) -> x in (0,1)
;      advance the state of the generator and return the next random
;      real number between zero and one (both excluded). The type of
;      the result should be a flonum if possible.

; Required: Record Data Type
; ==========================
;
; At this point in the code, the following procedures are assumed
; to be defined to create and access a new record data type:
;
;   (:random-source-make a0 a1 a2 a3 a4 a5) -> s
;     constructs a new random source object s consisting of the 
;     objects a0 .. a5 in this order.
;
;   (:random-source? obj) -> bool
;     tests if a Scheme object is a :random-source.
;
;   (:random-source-state-ref         s) -> a0
;   (:random-source-state-set!        s) -> a1
;   (:random-source-randomize!        s) -> a2
;   (:random-source-pseudo-randomize! s) -> a3
;   (:random-source-make-integers     s) -> a4
;   (:random-source-make-reals        s) -> a5
;     retrieve the values in the fields of the object s.

; Required: Current Time as an Integer
; ====================================
;
; At this point in the code, the following procedure is assumed
; to be defined to obtain a value that is likely to be different
; for each invokation of the Scheme system:
;
;   (:random-source-current-time) -> x
;     an integer that depends on the system clock. It is desired
;     that the integer changes as fast as possible.


; Accessing the State
; ===================

(define (mrg32k3a-state-ref packed-state)
  (cons 'lecuyer-mrg32k3a 
        (vector->list (mrg32k3a-unpack-state packed-state))))

(define (mrg32k3a-state-set external-state)

  (define (check-value x m)
    (if (and (integer? x)
             (exact? x)
             (<= 0 x (- m 1)))
        #t
        (error "illegal value" x)))

  (if (and (list? external-state)
           (= (length external-state) 7)
           (eq? (car external-state) 'lecuyer-mrg32k3a))
      (let ((s (cdr external-state)))
        (check-value (list-ref s 0) mrg32k3a-m1)
        (check-value (list-ref s 1) mrg32k3a-m1)
        (check-value (list-ref s 2) mrg32k3a-m1)
        (check-value (list-ref s 3) mrg32k3a-m2)
        (check-value (list-ref s 4) mrg32k3a-m2)
        (check-value (list-ref s 5) mrg32k3a-m2)
        (if (or (zero? (+ (list-ref s 0) (list-ref s 1) (list-ref s 2)))
                (zero? (+ (list-ref s 3) (list-ref s 4) (list-ref s 5))))
            (error "illegal degenerate state" external-state))
        (mrg32k3a-pack-state (list->vector s)))
      (error "malformed state" external-state)))


; Pseudo-Randomization
; ====================
;
; Reference [1] above shows how to obtain many long streams and 
; substream from the backbone generator.
;
; The idea is that the generator is a linear operation on the state.
; Hence, we can express this operation as a 3x3-matrix acting on the
; three most recent states. Raising the matrix to the k-th power, we
; obtain the operation to advance the state by k steps at once. The
; virtual streams and substreams are now simply parts of the entire
; periodic sequence (which has period around 2^191).
;
; For the implementation it is necessary to compute with matrices in
; the ring (Z/(m1*m1)*Z)^(3x3). By the Chinese-Remainder Theorem, this
; is isomorphic to ((Z/m1*Z) x (Z/m2*Z))^(3x3). We represent such a pair
; of matrices 
;   [ [[x00 x01 x02],
;      [x10 x11 x12],
;      [x20 x21 x22]], mod m1
;     [[y00 y01 y02],
;      [y10 y11 y12],
;      [y20 y21 y22]]  mod m2]
; as a vector of length 18 of the integers as writen above:
;   #(x00 x01 x02 x10 x11 x12 x20 x21 x22
;     y00 y01 y02 y10 y11 y12 y20 y21 y22)
;
; As the implementation should only use the range {-2^53..2^53-1}, the
; fundamental operation (x*y) mod m, where x, y, m are nearly 2^32, 
; is computed by breaking up x and y as x = x1*w + x0 and y = y1*w + y0 
; where w = 2^16. In this case, all operations fit the range because 
; w^2 mod m is a small number. If proper multiprecision integers are
; available this is not necessary, but pseudo-randomize! is an expected
; to be called only occasionally so we do not provide this implementation.

(define mrg32k3a-m1 4294967087) ; modulus of component 1
(define mrg32k3a-m2 4294944443) ; modulus of component 2

(define mrg32k3a-initial-state ; 0 3 6 9 12 15 of A^16, see below
  '#( 1062452522
      2961816100 
       342112271 
      2854655037 
      3321940838 
      3542344109))

(define mrg32k3a-generators #f) ; computed when needed

(define (mrg32k3a-pseudo-randomize-state i j)

  (define (product A B) ; A*B in ((Z/m1*Z) x (Z/m2*Z))^(3x3)

    (define w      65536) ; wordsize to split {0..2^32-1}
    (define w-sqr1 209)   ; w^2 mod m1
    (define w-sqr2 22853) ; w^2 mod m2

    (define (lc i0 i1 i2 j0 j1 j2 m w-sqr) ; linear combination
      (let ((a0h (quotient (vector-ref A i0) w))
            (a0l (modulo   (vector-ref A i0) w))
            (a1h (quotient (vector-ref A i1) w))
            (a1l (modulo   (vector-ref A i1) w))
            (a2h (quotient (vector-ref A i2) w))
            (a2l (modulo   (vector-ref A i2) w))
            (b0h (quotient (vector-ref B j0) w))
            (b0l (modulo   (vector-ref B j0) w))
            (b1h (quotient (vector-ref B j1) w))
            (b1l (modulo   (vector-ref B j1) w))
            (b2h (quotient (vector-ref B j2) w))
            (b2l (modulo   (vector-ref B j2) w)))
        (modulo
         (+ (* (+ (* a0h b0h) 
                  (* a1h b1h) 
                  (* a2h b2h)) 
               w-sqr)
            (* (+ (* a0h b0l) 
                  (* a0l b0h)
                  (* a1h b1l) 
                  (* a1l b1h)
                  (* a2h b2l) 
                  (* a2l b2h))
               w)
            (* a0l b0l)
            (* a1l b1l)
            (* a2l b2l))
         m)))
    
    (vector
     (lc  0  1  2   0  3  6  mrg32k3a-m1 w-sqr1) ; (A*B)_00 mod m1
     (lc  0  1  2   1  4  7  mrg32k3a-m1 w-sqr1) ; (A*B)_01
     (lc  0  1  2   2  5  8  mrg32k3a-m1 w-sqr1)
     (lc  3  4  5   0  3  6  mrg32k3a-m1 w-sqr1) ; (A*B)_10
     (lc  3  4  5   1  4  7  mrg32k3a-m1 w-sqr1)
     (lc  3  4  5   2  5  8  mrg32k3a-m1 w-sqr1)
     (lc  6  7  8   0  3  6  mrg32k3a-m1 w-sqr1)
     (lc  6  7  8   1  4  7  mrg32k3a-m1 w-sqr1)
     (lc  6  7  8   2  5  8  mrg32k3a-m1 w-sqr1)
     (lc  9 10 11   9 12 15  mrg32k3a-m2 w-sqr2) ; (A*B)_00 mod m2
     (lc  9 10 11  10 13 16  mrg32k3a-m2 w-sqr2)
     (lc  9 10 11  11 14 17  mrg32k3a-m2 w-sqr2)
     (lc 12 13 14   9 12 15  mrg32k3a-m2 w-sqr2)
     (lc 12 13 14  10 13 16  mrg32k3a-m2 w-sqr2)
     (lc 12 13 14  11 14 17  mrg32k3a-m2 w-sqr2)
     (lc 15 16 17   9 12 15  mrg32k3a-m2 w-sqr2)
     (lc 15 16 17  10 13 16  mrg32k3a-m2 w-sqr2)
     (lc 15 16 17  11 14 17  mrg32k3a-m2 w-sqr2)))

  (define (power A e) ; A^e
    (cond
     ((zero? e)
      '#(1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1))
     ((= e 1)
      A)
     ((even? e)
      (power (product A A) (quotient e 2)))
     (else
      (product (power A (- e 1)) A))))

  (define (power-power A b) ; A^(2^b)
    (if (zero? b)
        A
        (power-power (product A A) (- b 1))))

  (define A                        ; the MRG32k3a recursion
    '#(     0 1403580 4294156359
            1       0          0
            0       1          0
       527612       0 4293573854
            1       0          0
            0       1          0))

  ; check arguments
  (if (not (and (integer? i) 
                (exact? i)
                (integer? j)
                (exact? j)))
      (error "i j must be exact integer" i j))

  ; precompute A^(2^127) and A^(2^76) only once

  (if (not mrg32k3a-generators)
      (set! mrg32k3a-generators
            (list (power-power A 127)
                  (power-power A  76)
                  (power A 16))))

  ; compute M = A^(16 + i*2^127 + j*2^76)
  (let ((M (product 
            (list-ref mrg32k3a-generators 2)
            (product
             (power (list-ref mrg32k3a-generators 0)
                    (modulo i (expt 2 28)))
             (power (list-ref mrg32k3a-generators 1) 
                    (modulo j (expt 2 28)))))))
    (mrg32k3a-pack-state
     (vector
      (vector-ref M 0)
      (vector-ref M 3)
      (vector-ref M 6)
      (vector-ref M 9)
      (vector-ref M 12)
      (vector-ref M 15)))))

; True Randomization
; ==================
;
; The value obtained from the system time is feed into a very
; simple pseudo random number generator. This in turn is used
; to obtain numbers to randomize the state of the MRG32k3a
; generator, avoiding period degeneration.

(define (mrg32k3a-randomize-state state)
  ;; G. Marsaglia's simple 16-bit generator with carry
  (let* ((m 65536)
	 (x (modulo (:random-source-current-time) m)))
    (define (random-m)
      (let ((y (modulo x m)))
	(set! x (+ (* 30903 y) (quotient x m)))
	y))
    (define (random n)			; m < n < m^2
      (modulo (+ (* (random-m) m) (random-m)) n))

					; modify the state
    (let ((m1 mrg32k3a-m1)
	  (m2 mrg32k3a-m2)
	  (s (mrg32k3a-unpack-state state)))
      (mrg32k3a-pack-state
       (vector
	(+ 1 (modulo (+ (vector-ref s 0) (random (- m1 1))) (- m1 1)))
	(modulo (+ (vector-ref s 1) (random m1)) m1)
	(modulo (+ (vector-ref s 2) (random m1)) m1)
	(+ 1 (modulo (+ (vector-ref s 3) (random (- m2 1))) (- m2 1)))
	(modulo (+ (vector-ref s 4) (random m2)) m2)
	(modulo (+ (vector-ref s 5) (random m2)) m2))))))


; Large Integers
; ==============
;
; To produce large integer random deviates, for n > m-max, we first 
; construct large random numbers in the range {0..m-max^k-1} for some 
; k such that m-max^k >= n and then use the rejection method to choose
; uniformly from the range {0..n-1}.

(define mrg32k3a-m-max
  (mrg32k3a-random-range))

(define (mrg32k3a-random-power state k) ; n = m-max^k, k >= 1
  (if (= k 1)
      (mrg32k3a-random-integer state mrg32k3a-m-max)
      (+ (* (mrg32k3a-random-power state (- k 1)) mrg32k3a-m-max)
         (mrg32k3a-random-integer state mrg32k3a-m-max))))

(define (mrg32k3a-random-large state n) ; n > m-max
  (do ((k 2 (+ k 1))
       (mk (* mrg32k3a-m-max mrg32k3a-m-max) (* mk mrg32k3a-m-max)))
      ((>= mk n)
       (let* ((mk-by-n (quotient mk n))
              (a (* mk-by-n n)))
         (do ((x (mrg32k3a-random-power state k)
                 (mrg32k3a-random-power state k)))
             ((< x a) (quotient x mk-by-n)))))))


; Multiple Precision Reals
; ========================
;
; To produce multiple precision reals we produce a large integer value
; and convert it into a real value. This value is then normalized.
; The precision goal is unit <= 1/(m^k + 1), or 1/unit - 1 <= m^k.
; If you know more about the floating point number types of the
; Scheme system, this can be improved.

(define (mrg32k3a-random-real-mp state unit)
  (do ((k 1 (+ k 1))
       (u (- (/ 1 unit) 1) (/ u mrg32k3a-m1)))
      ((<= u 1)
       (/ (exact->inexact (+ (mrg32k3a-random-power state k) 1))
          (exact->inexact (+ (expt mrg32k3a-m-max k) 1))))))


; Provide the Interface as Specified in the SRFI
; ==============================================
;
; An object of type random-source is a record containing the procedures
; as components. The actual state of the generator is stored in the
; binding-time environment of make-random-source.

(define (make-random-source)
  (let ((state (mrg32k3a-pack-state ; make a new copy
                (list->vector (vector->list mrg32k3a-initial-state)))))
    (:random-source-make
     (lambda ()
       (mrg32k3a-state-ref state))
     (lambda (new-state)
       (set! state (mrg32k3a-state-set new-state)))
     (lambda ()
       (set! state (mrg32k3a-randomize-state state)))
     (lambda (i j)
       (set! state (mrg32k3a-pseudo-randomize-state i j)))
     (lambda ()
       (lambda (n)
         (cond
          ((not (and (integer? n) (exact? n) (positive? n)))
           (error "range must be exact positive integer" n))           
          ((<= n mrg32k3a-m-max)
           (mrg32k3a-random-integer state n))
          (else
           (mrg32k3a-random-large state n)))))
     (lambda args
       (cond
        ((null? args)
         (lambda () 
           (mrg32k3a-random-real state)))
        ((null? (cdr args))
         (let ((unit (car args)))
           (cond
            ((not (and (real? unit) (< 0 unit 1)))
             (error "unit must be real in (0,1)" unit))
            ((<= (- (/ 1 unit) 1) mrg32k3a-m1)
             (lambda () 
               (mrg32k3a-random-real state)))
            (else
             (lambda () 
               (mrg32k3a-random-real-mp state unit))))))
        (else
         (error "illegal arguments" args)))))))

(define random-source? 
  :random-source?)

(define (random-source-state-ref s)
  ((:random-source-state-ref s)))

(define (random-source-state-set! s state)
  ((:random-source-state-set! s) state))

(define (random-source-randomize! s)
  ((:random-source-randomize! s)))

(define (random-source-pseudo-randomize! s i j)
  ((:random-source-pseudo-randomize! s) i j))

; ---

(define (random-source-make-integers s)
  ((:random-source-make-integers s)))

(define (random-source-make-reals s . unit)
  (apply (:random-source-make-reals s) unit))

; ---

(define default-random-source 
  (make-random-source))

(define random-integer
  (random-source-make-integers default-random-source))

(define random-real
  (random-source-make-reals default-random-source))