/usr/share/scheme48-1.9/srfi/srfi-27.scm is in scheme48 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | ; MODULE DEFINITION FOR SRFI-27, C/SCHEME-IMPLEMENTATION
; ======================================================
;
; Copyright (C) Sebastian Egner (2002). All Rights Reserved.
;
; Permission is hereby granted, free of charge, to any person
; obtaining a copy of this software and associated documentation
; files (the "Software"), to deal in the Software without
; restriction, including without limitation the rights to use, copy,
; modify, merge, publish, distribute, sublicense, and/or sell copies
; of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be
; included in all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
; BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
; ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
; CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
; SOFTWARE.
; Sebastian.Egner@philips.com, Mar-2002, in Scheme 48 0.57
;
; This file contains the top-level definition for the C-code
; implementation of SRFI-27 for the Scheme 48 0.57 system.
;
; 1. The core generator is implemented in 'mrg32k3a-b.c'.
; 2. The generic parts of the interface are in 'mrg32k3a.scm'.
; (they have now been merged into this file)
; 3. The non-generic parts (record type, time, error, C-bindings) are here.
;
; creating the module:
; copy mrg32k3a-b.c into $SCHEME48/c/srfi-27/mrg32k3a-b.c
; edit $SCHEME48/Makefile.in
; add c/srfi-27/mrg32k3a-b.o to EXTERNAL_OBJECTS
; add mrg32k3a_init to EXTERNAL_INITIALIZERS
; add the make line c/srfi-27/mrg32k3a-b.o: c/scheme48.h
; cd $SCHEME48
; make clean
; configure
; make
; cd $SRFI27
; ,config ,load srfi-27-b.scm
;
; loading the module, once created:
; ,open srfi-27
;
; history of this file:
; SE, 22-Mar-2002: initial version
; SE, 25-Mar-2002: initial version
; MG, September 2002: merged in mrg32k2a.scm, move package definitons to
; more-packages.scm, renamed from srfi-27-b.scm to srfi-27.scm
(import-dynamic-externals "=scheme48external/srfi-27")
(define-record-type :random-source
(:random-source-make
state-ref
state-set!
randomize!
pseudo-randomize!
make-integers
make-reals)
:random-source?
(state-ref :random-source-state-ref)
(state-set! :random-source-state-set!)
(randomize! :random-source-randomize!)
(pseudo-randomize! :random-source-pseudo-randomize!)
(make-integers :random-source-make-integers)
(make-reals :random-source-make-reals))
(define (:random-source-current-time)
(current-time))
;; interface to core generator
(import-lambda-definition-2 mrg32k3a-pack-state1 (state))
(import-lambda-definition-2 mrg32k3a-unpack-state1 (state))
(import-lambda-definition-2 mrg32k3a-random-range ())
(import-lambda-definition-2 mrg32k3a-random-integer (state range))
(import-lambda-definition-2 mrg32k3a-random-real (state))
(import-lambda-definition-2 current-time ())
(define (mrg32k3a-pack-state state)
(mrg32k3a-pack-state1
(list->vector
(apply append
(map (lambda (x)
(list (modulo x 65536)
(quotient x 65536)))
(vector->list state))))))
(define (mrg32k3a-unpack-state state)
(let ((s (mrg32k3a-unpack-state1 state)) (w 65536))
(vector
(+ (vector-ref s 0) (* (vector-ref s 1) w))
(+ (vector-ref s 2) (* (vector-ref s 3) w))
(+ (vector-ref s 4) (* (vector-ref s 5) w))
(+ (vector-ref s 6) (* (vector-ref s 7) w))
(+ (vector-ref s 8) (* (vector-ref s 9) w))
(+ (vector-ref s 10) (* (vector-ref s 11) w)))))
; Start of former file mrg32k3a.scm
;
; GENERIC PART OF MRG32k3a-GENERATOR FOR SRFI-27
; ==============================================
;
; Sebastian.Egner@philips.com, 2002.
;
; This is the generic R5RS-part of the implementation of the MRG32k3a
; generator to be used in SRFI-27. It is based on a separate implementation
; of the core generator (presumably in native code) and on code to
; provide essential functionality not available in R5RS (see below).
;
; compliance:
; Scheme R5RS with integer covering at least {-2^53..2^53-1}.
; In addition,
; SRFI-23: error
;
; history of this file:
; SE, 22-Mar-2002: refactored from earlier versions
; SE, 25-Mar-2002: pack/unpack need not allocate
; SE, 27-Mar-2002: changed interface to core generator
; SE, 10-Apr-2002: updated spec of mrg32k3a-random-integer
; Generator
; =========
;
; Pierre L'Ecuyer's MRG32k3a generator is a Combined Multiple Recursive
; Generator. It produces the sequence {(x[1,n] - x[2,n]) mod m1 : n}
; defined by the two recursive generators
;
; x[1,n] = ( a12 x[1,n-2] + a13 x[1,n-3]) mod m1,
; x[2,n] = (a21 x[2,n-1] + a23 x[2,n-3]) mod m2,
;
; where the constants are
; m1 = 4294967087 = 2^32 - 209 modulus of 1st component
; m2 = 4294944443 = 2^32 - 22853 modulus of 2nd component
; a12 = 1403580 recursion coefficients
; a13 = -810728
; a21 = 527612
; a23 = -1370589
;
; The generator passes all tests of G. Marsaglia's Diehard testsuite.
; Its period is (m1^3 - 1)(m2^3 - 1)/2 which is nearly 2^191.
; L'Ecuyer reports: "This generator is well-behaved in all dimensions
; up to at least 45: ..." [with respect to the spectral test, SE].
;
; The period is maximal for all values of the seed as long as the
; state of both recursive generators is not entirely zero.
;
; As the successor state is a linear combination of previous
; states, it is possible to advance the generator by more than one
; iteration by applying a linear transformation. The following
; publication provides detailed information on how to do that:
;
; [1] P. L'Ecuyer, R. Simard, E. J. Chen, W. D. Kelton:
; An Object-Oriented Random-Number Package With Many Long
; Streams and Substreams. 2001.
; To appear in Operations Research.
;
; Arithmetics
; ===========
;
; The MRG32k3a generator produces values in {0..2^32-209-1}. All
; subexpressions of the actual generator fit into {-2^53..2^53-1}.
; The code below assumes that Scheme's "integer" covers this range.
; In addition, it is assumed that floating point literals can be
; read and there is some arithmetics with inexact numbers.
;
; However, for advancing the state of the generator by more than
; one step at a time, the full range {0..2^32-209-1} is needed.
; Required: Backbone Generator
; ============================
;
; At this point in the code, the following procedures are assumed
; to be defined to execute the core generator:
;
; (mrg32k3a-pack-state unpacked-state) -> packed-state
; (mrg32k3a-unpack-state packed-state) -> unpacked-state
; pack/unpack a state of the generator. The core generator works
; on packed states, passed as an explicit argument, only. This
; allows native code implementations to store their state in a
; suitable form. Unpacked states are #(x10 x11 x12 x20 x21 x22)
; with integer x_ij. Pack/unpack need not allocate new objects
; in case packed and unpacked states are identical.
;
; (mrg32k3a-random-range) -> m-max
; (mrg32k3a-random-integer packed-state range) -> x in {0..range-1}
; advance the state of the generator and return the next random
; range-limited integer.
; Note that the state is not necessarily advanced by just one
; step because we use the rejection method to avoid any problems
; with distribution anomalies.
; The range argument must be an exact integer in {1..m-max}.
; It can be assumed that range is a fixnum if the Scheme system
; has such a number representation.
;
; (mrg32k3a-random-real packed-state) -> x in (0,1)
; advance the state of the generator and return the next random
; real number between zero and one (both excluded). The type of
; the result should be a flonum if possible.
; Required: Record Data Type
; ==========================
;
; At this point in the code, the following procedures are assumed
; to be defined to create and access a new record data type:
;
; (:random-source-make a0 a1 a2 a3 a4 a5) -> s
; constructs a new random source object s consisting of the
; objects a0 .. a5 in this order.
;
; (:random-source? obj) -> bool
; tests if a Scheme object is a :random-source.
;
; (:random-source-state-ref s) -> a0
; (:random-source-state-set! s) -> a1
; (:random-source-randomize! s) -> a2
; (:random-source-pseudo-randomize! s) -> a3
; (:random-source-make-integers s) -> a4
; (:random-source-make-reals s) -> a5
; retrieve the values in the fields of the object s.
; Required: Current Time as an Integer
; ====================================
;
; At this point in the code, the following procedure is assumed
; to be defined to obtain a value that is likely to be different
; for each invokation of the Scheme system:
;
; (:random-source-current-time) -> x
; an integer that depends on the system clock. It is desired
; that the integer changes as fast as possible.
; Accessing the State
; ===================
(define (mrg32k3a-state-ref packed-state)
(cons 'lecuyer-mrg32k3a
(vector->list (mrg32k3a-unpack-state packed-state))))
(define (mrg32k3a-state-set external-state)
(define (check-value x m)
(if (and (integer? x)
(exact? x)
(<= 0 x (- m 1)))
#t
(error "illegal value" x)))
(if (and (list? external-state)
(= (length external-state) 7)
(eq? (car external-state) 'lecuyer-mrg32k3a))
(let ((s (cdr external-state)))
(check-value (list-ref s 0) mrg32k3a-m1)
(check-value (list-ref s 1) mrg32k3a-m1)
(check-value (list-ref s 2) mrg32k3a-m1)
(check-value (list-ref s 3) mrg32k3a-m2)
(check-value (list-ref s 4) mrg32k3a-m2)
(check-value (list-ref s 5) mrg32k3a-m2)
(if (or (zero? (+ (list-ref s 0) (list-ref s 1) (list-ref s 2)))
(zero? (+ (list-ref s 3) (list-ref s 4) (list-ref s 5))))
(error "illegal degenerate state" external-state))
(mrg32k3a-pack-state (list->vector s)))
(error "malformed state" external-state)))
; Pseudo-Randomization
; ====================
;
; Reference [1] above shows how to obtain many long streams and
; substream from the backbone generator.
;
; The idea is that the generator is a linear operation on the state.
; Hence, we can express this operation as a 3x3-matrix acting on the
; three most recent states. Raising the matrix to the k-th power, we
; obtain the operation to advance the state by k steps at once. The
; virtual streams and substreams are now simply parts of the entire
; periodic sequence (which has period around 2^191).
;
; For the implementation it is necessary to compute with matrices in
; the ring (Z/(m1*m1)*Z)^(3x3). By the Chinese-Remainder Theorem, this
; is isomorphic to ((Z/m1*Z) x (Z/m2*Z))^(3x3). We represent such a pair
; of matrices
; [ [[x00 x01 x02],
; [x10 x11 x12],
; [x20 x21 x22]], mod m1
; [[y00 y01 y02],
; [y10 y11 y12],
; [y20 y21 y22]] mod m2]
; as a vector of length 18 of the integers as writen above:
; #(x00 x01 x02 x10 x11 x12 x20 x21 x22
; y00 y01 y02 y10 y11 y12 y20 y21 y22)
;
; As the implementation should only use the range {-2^53..2^53-1}, the
; fundamental operation (x*y) mod m, where x, y, m are nearly 2^32,
; is computed by breaking up x and y as x = x1*w + x0 and y = y1*w + y0
; where w = 2^16. In this case, all operations fit the range because
; w^2 mod m is a small number. If proper multiprecision integers are
; available this is not necessary, but pseudo-randomize! is an expected
; to be called only occasionally so we do not provide this implementation.
(define mrg32k3a-m1 4294967087) ; modulus of component 1
(define mrg32k3a-m2 4294944443) ; modulus of component 2
(define mrg32k3a-initial-state ; 0 3 6 9 12 15 of A^16, see below
'#( 1062452522
2961816100
342112271
2854655037
3321940838
3542344109))
(define mrg32k3a-generators #f) ; computed when needed
(define (mrg32k3a-pseudo-randomize-state i j)
(define (product A B) ; A*B in ((Z/m1*Z) x (Z/m2*Z))^(3x3)
(define w 65536) ; wordsize to split {0..2^32-1}
(define w-sqr1 209) ; w^2 mod m1
(define w-sqr2 22853) ; w^2 mod m2
(define (lc i0 i1 i2 j0 j1 j2 m w-sqr) ; linear combination
(let ((a0h (quotient (vector-ref A i0) w))
(a0l (modulo (vector-ref A i0) w))
(a1h (quotient (vector-ref A i1) w))
(a1l (modulo (vector-ref A i1) w))
(a2h (quotient (vector-ref A i2) w))
(a2l (modulo (vector-ref A i2) w))
(b0h (quotient (vector-ref B j0) w))
(b0l (modulo (vector-ref B j0) w))
(b1h (quotient (vector-ref B j1) w))
(b1l (modulo (vector-ref B j1) w))
(b2h (quotient (vector-ref B j2) w))
(b2l (modulo (vector-ref B j2) w)))
(modulo
(+ (* (+ (* a0h b0h)
(* a1h b1h)
(* a2h b2h))
w-sqr)
(* (+ (* a0h b0l)
(* a0l b0h)
(* a1h b1l)
(* a1l b1h)
(* a2h b2l)
(* a2l b2h))
w)
(* a0l b0l)
(* a1l b1l)
(* a2l b2l))
m)))
(vector
(lc 0 1 2 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_00 mod m1
(lc 0 1 2 1 4 7 mrg32k3a-m1 w-sqr1) ; (A*B)_01
(lc 0 1 2 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_10
(lc 3 4 5 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 0 3 6 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 9 10 11 9 12 15 mrg32k3a-m2 w-sqr2) ; (A*B)_00 mod m2
(lc 9 10 11 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 9 10 11 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 11 14 17 mrg32k3a-m2 w-sqr2)))
(define (power A e) ; A^e
(cond
((zero? e)
'#(1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1))
((= e 1)
A)
((even? e)
(power (product A A) (quotient e 2)))
(else
(product (power A (- e 1)) A))))
(define (power-power A b) ; A^(2^b)
(if (zero? b)
A
(power-power (product A A) (- b 1))))
(define A ; the MRG32k3a recursion
'#( 0 1403580 4294156359
1 0 0
0 1 0
527612 0 4293573854
1 0 0
0 1 0))
; check arguments
(if (not (and (integer? i)
(exact? i)
(integer? j)
(exact? j)))
(error "i j must be exact integer" i j))
; precompute A^(2^127) and A^(2^76) only once
(if (not mrg32k3a-generators)
(set! mrg32k3a-generators
(list (power-power A 127)
(power-power A 76)
(power A 16))))
; compute M = A^(16 + i*2^127 + j*2^76)
(let ((M (product
(list-ref mrg32k3a-generators 2)
(product
(power (list-ref mrg32k3a-generators 0)
(modulo i (expt 2 28)))
(power (list-ref mrg32k3a-generators 1)
(modulo j (expt 2 28)))))))
(mrg32k3a-pack-state
(vector
(vector-ref M 0)
(vector-ref M 3)
(vector-ref M 6)
(vector-ref M 9)
(vector-ref M 12)
(vector-ref M 15)))))
; True Randomization
; ==================
;
; The value obtained from the system time is feed into a very
; simple pseudo random number generator. This in turn is used
; to obtain numbers to randomize the state of the MRG32k3a
; generator, avoiding period degeneration.
(define (mrg32k3a-randomize-state state)
;; G. Marsaglia's simple 16-bit generator with carry
(let* ((m 65536)
(x (modulo (:random-source-current-time) m)))
(define (random-m)
(let ((y (modulo x m)))
(set! x (+ (* 30903 y) (quotient x m)))
y))
(define (random n) ; m < n < m^2
(modulo (+ (* (random-m) m) (random-m)) n))
; modify the state
(let ((m1 mrg32k3a-m1)
(m2 mrg32k3a-m2)
(s (mrg32k3a-unpack-state state)))
(mrg32k3a-pack-state
(vector
(+ 1 (modulo (+ (vector-ref s 0) (random (- m1 1))) (- m1 1)))
(modulo (+ (vector-ref s 1) (random m1)) m1)
(modulo (+ (vector-ref s 2) (random m1)) m1)
(+ 1 (modulo (+ (vector-ref s 3) (random (- m2 1))) (- m2 1)))
(modulo (+ (vector-ref s 4) (random m2)) m2)
(modulo (+ (vector-ref s 5) (random m2)) m2))))))
; Large Integers
; ==============
;
; To produce large integer random deviates, for n > m-max, we first
; construct large random numbers in the range {0..m-max^k-1} for some
; k such that m-max^k >= n and then use the rejection method to choose
; uniformly from the range {0..n-1}.
(define mrg32k3a-m-max
(mrg32k3a-random-range))
(define (mrg32k3a-random-power state k) ; n = m-max^k, k >= 1
(if (= k 1)
(mrg32k3a-random-integer state mrg32k3a-m-max)
(+ (* (mrg32k3a-random-power state (- k 1)) mrg32k3a-m-max)
(mrg32k3a-random-integer state mrg32k3a-m-max))))
(define (mrg32k3a-random-large state n) ; n > m-max
(do ((k 2 (+ k 1))
(mk (* mrg32k3a-m-max mrg32k3a-m-max) (* mk mrg32k3a-m-max)))
((>= mk n)
(let* ((mk-by-n (quotient mk n))
(a (* mk-by-n n)))
(do ((x (mrg32k3a-random-power state k)
(mrg32k3a-random-power state k)))
((< x a) (quotient x mk-by-n)))))))
; Multiple Precision Reals
; ========================
;
; To produce multiple precision reals we produce a large integer value
; and convert it into a real value. This value is then normalized.
; The precision goal is unit <= 1/(m^k + 1), or 1/unit - 1 <= m^k.
; If you know more about the floating point number types of the
; Scheme system, this can be improved.
(define (mrg32k3a-random-real-mp state unit)
(do ((k 1 (+ k 1))
(u (- (/ 1 unit) 1) (/ u mrg32k3a-m1)))
((<= u 1)
(/ (exact->inexact (+ (mrg32k3a-random-power state k) 1))
(exact->inexact (+ (expt mrg32k3a-m-max k) 1))))))
; Provide the Interface as Specified in the SRFI
; ==============================================
;
; An object of type random-source is a record containing the procedures
; as components. The actual state of the generator is stored in the
; binding-time environment of make-random-source.
(define (make-random-source)
(let ((state (mrg32k3a-pack-state ; make a new copy
(list->vector (vector->list mrg32k3a-initial-state)))))
(:random-source-make
(lambda ()
(mrg32k3a-state-ref state))
(lambda (new-state)
(set! state (mrg32k3a-state-set new-state)))
(lambda ()
(set! state (mrg32k3a-randomize-state state)))
(lambda (i j)
(set! state (mrg32k3a-pseudo-randomize-state i j)))
(lambda ()
(lambda (n)
(cond
((not (and (integer? n) (exact? n) (positive? n)))
(error "range must be exact positive integer" n))
((<= n mrg32k3a-m-max)
(mrg32k3a-random-integer state n))
(else
(mrg32k3a-random-large state n)))))
(lambda args
(cond
((null? args)
(lambda ()
(mrg32k3a-random-real state)))
((null? (cdr args))
(let ((unit (car args)))
(cond
((not (and (real? unit) (< 0 unit 1)))
(error "unit must be real in (0,1)" unit))
((<= (- (/ 1 unit) 1) mrg32k3a-m1)
(lambda ()
(mrg32k3a-random-real state)))
(else
(lambda ()
(mrg32k3a-random-real-mp state unit))))))
(else
(error "illegal arguments" args)))))))
(define random-source?
:random-source?)
(define (random-source-state-ref s)
((:random-source-state-ref s)))
(define (random-source-state-set! s state)
((:random-source-state-set! s) state))
(define (random-source-randomize! s)
((:random-source-randomize! s)))
(define (random-source-pseudo-randomize! s i j)
((:random-source-pseudo-randomize! s) i j))
; ---
(define (random-source-make-integers s)
((:random-source-make-integers s)))
(define (random-source-make-reals s . unit)
(apply (:random-source-make-reals s) unit))
; ---
(define default-random-source
(make-random-source))
(define random-integer
(random-source-make-integers default-random-source))
(define random-real
(random-source-make-reals default-random-source))
|