This file is indexed.

/usr/share/scheme48-1.9/rts/recnum.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber

; Rectangular complex arithmetic built on real arithmetic.

(define-extended-number-type <recnum> (<complex>)
  (make-recnum real imag)
  recnum?
  (real recnum-real-part)
  (imag recnum-imag-part))

(define (rectangulate x y)    ; Assumes (eq? (exact? x) (exact? y))
  (if (= y 0)
      x
      (make-recnum x y)))

(define (rectangular-real-part z)
  (if (recnum? z)
      (recnum-real-part z)
      (real-part z)))

(define (rectangular-imag-part z)
  (if (recnum? z)
      (recnum-imag-part z)
      (imag-part z)))

(define (rectangular+ a b)
  (rectangulate (+ (rectangular-real-part a) (rectangular-real-part b))
		(+ (rectangular-imag-part a) (rectangular-imag-part b))))

(define (rectangular- a b)
  (rectangulate (- (rectangular-real-part a) (rectangular-real-part b))
		(- (rectangular-imag-part a) (rectangular-imag-part b))))

(define (rectangular* a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (rectangulate (- (* a1 b1) (* a2 b2))
		  (+ (* a1 b2) (* a2 b1)))))

(define (rectangular/ a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (let ((d (+ (* b1 b1) (* b2 b2))))
      (rectangulate (/ (+ (* a1 b1) (* a2 b2)) d)
		    (/ (- (* a2 b1) (* a1 b2)) d)))))

(define (rectangular= a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (and (= a1 b1) (= a2 b2))))


; Methods

(define-method &complex? ((z <recnum>)) #t)

(define-method &real-part ((z <recnum>)) (recnum-real-part z))
(define-method &imag-part ((z <recnum>)) (recnum-imag-part z))

(define-method &magnitude ((z <recnum>))
  (let ((r (recnum-real-part z))
	(i (recnum-imag-part z)))
    (sqrt (+ (* r r) (* i i)))))

(define-method &angle ((z <recnum>))
  (atan (recnum-imag-part z)
	(recnum-real-part z)))

; Methods on complexes in terms of real-part and imag-part

(define-method &exact? ((z <recnum>))
  (exact? (recnum-real-part z)))

(define-method &inexact->exact ((z <recnum>))
  (make-recnum (inexact->exact (recnum-real-part z))
	       (inexact->exact (recnum-imag-part z))))

(define-method &exact->inexact ((z <recnum>))
  (make-recnum (exact->inexact (recnum-real-part z))
	       (exact->inexact (recnum-imag-part z))))

(define (define-recnum-method mtable proc)
  (define-method mtable ((m <recnum>) (n <complex>)) (proc m n))
  (define-method mtable ((m <complex>) (n <recnum>)) (proc m n)))

(define-recnum-method &+ rectangular+)
(define-recnum-method &- rectangular-)
(define-recnum-method &* rectangular*)
(define-recnum-method &/ rectangular/)
(define-recnum-method &= rectangular=)

(define-method &sqrt ((n <real>))
  (if (< n 0)
      (make-rectangular 0 (sqrt (- 0 n)))
      (next-method)))			; not that we have to

(define-method &sqrt ((z <recnum>))
  (exp (/ (log z) 2)))

(define plus-i (make-recnum 0 1)) ; we can't read +i yet
(define minus-i (make-recnum 0 -1))

(define-method &exp ((z <recnum>))
  (let ((i (imag-part z)))
    (* (exp (real-part z))
       (+ (cos i) (* plus-i (sin i))))))

(define-method &log ((z <recnum>))
  (+ (log (magnitude z)) (* plus-i (angle z))))

(define pi (delay (* 2 (asin 1)))) ; can't compute at build time

(define-method &log ((n <real>))
  (if (< n 0)
      (make-rectangular (log (- 0 n)) (force pi))
      (next-method)))

(define-method &sin ((c <recnum>))
  (let ((i-c (* c plus-i)))
    (/ (- (exp i-c)
	  (exp (- 0 i-c)))
       (* 2 plus-i))))

(define-method &cos ((c <recnum>))
  (let ((i-c (* c plus-i)))
    (/ (+ (exp i-c)
	  (exp (- 0 i-c)))
       2)))

(define-method &tan ((c <recnum>))
  (/ (sin c) (cos c)))

(define-method &asin ((c <recnum>))
  (* minus-i
     (log (+ (* c plus-i)
	     (sqrt (- 1 (* c c)))))))

(define-method &acos ((c <recnum>))
  (* minus-i
     (log (+ c
	     (* plus-i (sqrt (- 1 (* c c))))))))

; kludge; we can't read floating point yet
(define infinity (delay (expt (exact->inexact 2) (exact->inexact 1500))))

(define-method &atan1 ((c <recnum>))
  (if (or (= c plus-i)
	  (= c minus-i))
      (- 0 (force infinity))
      (* plus-i
	 (/ (log (/ (+ plus-i c)
		    (+ plus-i (- 0 c))))
	    2))))

; Gleep!  Can we do quotient and remainder on Gaussian integers?
; Can we do numerator and denominator on complex rationals?

(define-method &number->string ((z <recnum>) radix)
  (let ((x (real-part z))
	(y (imag-part z)))
    (let ((r (number->string x radix))
	  (i (number->string (abs y) radix))
	  (& (if (< y 0) "-" "+")))
      (if (and (inexact? y)		;gross
	       (char=? (string-ref i 0) #\#))
	  (string-append (if (char=? (string-ref r 0) #\#)
			     ""
			     "#i")
			 r &
			 (substring i 2 (string-length i))
			 "i")
	  (string-append r & i "i")))))

(define-method &make-rectangular ((x <real>) (y <real>))
  (if (eq? (exact? x) (exact? y))
      (rectangulate x y)
      (rectangulate (exact->inexact x) (exact->inexact y))))

(define-method &make-polar ((x <real>) (y <real>))
  (rectangulate (* x (cos y)) (* x (sin y))))