/usr/lib/python2.7/dist-packages/rdflib/void.py is in python-rdflib 4.1.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | import collections
from rdflib import URIRef, Graph, Literal
from rdflib.namespace import VOID, RDF
def generateVoID(g, dataset=None, res=None, distinctForPartitions=True):
"""
Returns a new graph with a VoID description of the passed dataset
For more info on Vocabulary of Interlinked Datasets (VoID), see:
http://vocab.deri.ie/void
This only makes two passes through the triples (once to detect the types
of things)
The tradeoff is that lots of temporary structures are built up in memory
meaning lots of memory may be consumed :)
I imagine at least a few copies of your original graph.
the distinctForPartitions parameter controls whether
distinctSubjects/objects are tracked for each class/propertyPartition
this requires more memory again
"""
typeMap = collections.defaultdict(set)
classes = collections.defaultdict(set)
for e, c in g.subject_objects(RDF.type):
classes[c].add(e)
typeMap[e].add(c)
triples = 0
subjects = set()
objects = set()
properties = set()
classCount = collections.defaultdict(int)
propCount = collections.defaultdict(int)
classProps = collections.defaultdict(set)
classObjects = collections.defaultdict(set)
propSubjects = collections.defaultdict(set)
propObjects = collections.defaultdict(set)
for s, p, o in g:
triples += 1
subjects.add(s)
properties.add(p)
objects.add(o)
# class partitions
if s in typeMap:
for c in typeMap[s]:
classCount[c] += 1
if distinctForPartitions:
classObjects[c].add(o)
classProps[c].add(p)
# property partitions
propCount[p] += 1
if distinctForPartitions:
propObjects[p].add(o)
propSubjects[p].add(s)
if not dataset:
dataset = URIRef("http://example.org/Dataset")
if not res:
res = Graph()
res.add((dataset, RDF.type, VOID.Dataset))
# basic stats
res.add((dataset, VOID.triples, Literal(triples)))
res.add((dataset, VOID.classes, Literal(len(classes))))
res.add((dataset, VOID.distinctObjects, Literal(len(objects))))
res.add((dataset, VOID.distinctSubjects, Literal(len(subjects))))
res.add((dataset, VOID.properties, Literal(len(properties))))
for i, c in enumerate(classes):
part = URIRef(dataset + "_class%d" % i)
res.add((dataset, VOID.classPartition, part))
res.add((part, RDF.type, VOID.Dataset))
res.add((part, VOID.triples, Literal(classCount[c])))
res.add((part, VOID.classes, Literal(1)))
res.add((part, VOID["class"], c))
res.add((part, VOID.entities, Literal(len(classes[c]))))
res.add((part, VOID.distinctSubjects, Literal(len(classes[c]))))
if distinctForPartitions:
res.add(
(part, VOID.properties, Literal(len(classProps[c]))))
res.add((part, VOID.distinctObjects,
Literal(len(classObjects[c]))))
for i, p in enumerate(properties):
part = URIRef(dataset + "_property%d" % i)
res.add((dataset, VOID.propertyPartition, part))
res.add((part, RDF.type, VOID.Dataset))
res.add((part, VOID.triples, Literal(propCount[p])))
res.add((part, VOID.properties, Literal(1)))
res.add((part, VOID.property, p))
if distinctForPartitions:
entities = 0
propClasses = set()
for s in propSubjects[p]:
if s in typeMap:
entities += 1
for c in typeMap[s]:
propClasses.add(c)
res.add((part, VOID.entities, Literal(entities)))
res.add((part, VOID.classes, Literal(len(propClasses))))
res.add((part, VOID.distinctSubjects,
Literal(len(propSubjects[p]))))
res.add((part, VOID.distinctObjects,
Literal(len(propObjects[p]))))
return res, dataset
|