This file is indexed.

/usr/lib/python2.7/dist-packages/pyopencl/reduction.py is in python-pyopencl 2014.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
"""Computation of reductions on vectors."""

from __future__ import division

__copyright__ = "Copyright (C) 2010 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Based on code/ideas by Mark Harris <mharris@nvidia.com>.
None of the original source code remains.
"""


import pyopencl as cl
from pyopencl.tools import (
        context_dependent_memoize,
        dtype_to_ctype, KernelTemplateBase,
        _process_code_for_macro)
import numpy as np


# {{{ kernel source

KERNEL = """//CL//
    #define GROUP_SIZE ${group_size}
    #define READ_AND_MAP(i) (${map_expr})
    #define REDUCE(a, b) (${reduce_expr})

    % if double_support:
        #pragma OPENCL EXTENSION cl_khr_fp64: enable
        #define PYOPENCL_DEFINE_CDOUBLE
    % endif

    #include <pyopencl-complex.h>

    ${preamble}

    typedef ${out_type} out_type;

    __kernel void ${name}(
      __global out_type *out, ${arguments},
      unsigned int seq_count, unsigned int n)
    {
       ${arg_prep}

        __local out_type ldata[GROUP_SIZE];

        unsigned int lid = get_local_id(0);

        unsigned int i = get_group_id(0)*GROUP_SIZE*seq_count + lid;

        out_type acc = ${neutral};
        for (unsigned s = 0; s < seq_count; ++s)
        {
          if (i >= n)
            break;
          acc = REDUCE(acc, READ_AND_MAP(i));

          i += GROUP_SIZE;
        }

        ldata[lid] = acc;

        <%
          cur_size = group_size
        %>

        % while cur_size > no_sync_size:
            barrier(CLK_LOCAL_MEM_FENCE);

            <%
            new_size = cur_size // 2
            assert new_size * 2 == cur_size
            %>

            if (lid < ${new_size})
            {
                ldata[lid] = REDUCE(
                  ldata[lid],
                  ldata[lid + ${new_size}]);
            }

            <% cur_size = new_size %>

        % endwhile

        % if cur_size > 1:
            ## we need to synchronize one last time for entry into the
            ## no-sync region.

            barrier(CLK_LOCAL_MEM_FENCE);

            <%
            # NB: There's an exact duplicate of this calculation in the
            # %while loop below.

            new_size = cur_size // 2
            assert new_size * 2 == cur_size
            %>

            if (lid < ${new_size})
            {
                __local volatile out_type *lvdata = ldata;
                % while cur_size > 1:
                    <%
                    new_size = cur_size // 2
                    assert new_size * 2 == cur_size
                    %>

                    lvdata[lid] = REDUCE(
                      lvdata[lid],
                      lvdata[lid + ${new_size}]);

                    <% cur_size = new_size %>

                % endwhile

            }
        % endif

        if (lid == 0) out[get_group_id(0)] = ldata[0];
    }
    """

# }}}


# {{{ internal codegen frontends

def _get_reduction_source(
        ctx, out_type, out_type_size,
        neutral, reduce_expr, map_expr, parsed_args,
        name="reduce_kernel", preamble="", arg_prep="",
        device=None, max_group_size=None):

    if device is not None:
        devices = [device]
    else:
        devices = ctx.devices

    # {{{ compute group size

    def get_dev_group_size(device):
        # dirty fix for the RV770 boards
        max_work_group_size = device.max_work_group_size
        if "RV770" in device.name:
            max_work_group_size = 64

        # compute lmem limit
        from pytools import div_ceil
        lmem_wg_size = div_ceil(max_work_group_size, out_type_size)
        result = min(max_work_group_size, lmem_wg_size)

        # round down to power of 2
        from pyopencl.tools import bitlog2
        return 2**bitlog2(result)

    group_size = min(get_dev_group_size(dev) for dev in devices)

    if max_group_size is not None:
        group_size = min(max_group_size, group_size)

    # }}}

    # {{{ compute synchronization-less group size

    def get_dev_no_sync_size(device):
        from pyopencl.characterize import get_simd_group_size
        result = get_simd_group_size(device, out_type_size)

        if result is None:
            from warnings import warn
            warn("Reduction might be unnecessarily slow: "
                    "can't query SIMD group size")
            return 1

        return result

    no_sync_size = min(get_dev_no_sync_size(dev) for dev in devices)

    # }}}

    from mako.template import Template
    from pytools import all
    from pyopencl.characterize import has_double_support
    src = str(Template(KERNEL).render(
        out_type=out_type,
        arguments=", ".join(arg.declarator() for arg in parsed_args),
        group_size=group_size,
        no_sync_size=no_sync_size,
        neutral=neutral,
        reduce_expr=_process_code_for_macro(reduce_expr),
        map_expr=_process_code_for_macro(map_expr),
        name=name,
        preamble=preamble,
        arg_prep=arg_prep,
        double_support=all(has_double_support(dev) for dev in devices),
        ))

    from pytools import Record

    class ReductionInfo(Record):
        pass

    return ReductionInfo(
            context=ctx,
            source=src,
            group_size=group_size)


def get_reduction_kernel(stage,
         ctx, dtype_out,
         neutral, reduce_expr, map_expr=None, arguments=None,
         name="reduce_kernel", preamble="",
         device=None, options=[], max_group_size=None):

    if map_expr is None:
        if stage == 2:
            map_expr = "pyopencl_reduction_inp[i]"
        else:
            map_expr = "in[i]"

    from pyopencl.tools import (
            parse_arg_list, get_arg_list_scalar_arg_dtypes,
            get_arg_offset_adjuster_code, VectorArg)

    arg_prep = ""
    if stage == 1 and arguments is not None:
        arguments = parse_arg_list(arguments, with_offset=True)
        arg_prep = get_arg_offset_adjuster_code(arguments)

    if stage == 2 and arguments is not None:
        arguments = parse_arg_list(arguments)
        arguments = (
                [VectorArg(dtype_out, "pyopencl_reduction_inp")]
                + arguments)

    inf = _get_reduction_source(
            ctx, dtype_to_ctype(dtype_out), dtype_out.itemsize,
            neutral, reduce_expr, map_expr, arguments,
            name, preamble, arg_prep, device, max_group_size)

    inf.program = cl.Program(ctx, inf.source)
    inf.program.build(options)
    inf.kernel = getattr(inf.program, name)

    inf.arg_types = arguments

    inf.kernel.set_scalar_arg_dtypes(
            [None]
            + get_arg_list_scalar_arg_dtypes(inf.arg_types)
            + [np.uint32]*2)

    return inf

# }}}


# {{{ main reduction kernel

class ReductionKernel:
    def __init__(self, ctx, dtype_out,
            neutral, reduce_expr, map_expr=None, arguments=None,
            name="reduce_kernel", options=[], preamble=""):

        dtype_out = self.dtype_out = np.dtype(dtype_out)

        max_group_size = None
        trip_count = 0

        while True:
            self.stage_1_inf = get_reduction_kernel(1, ctx,
                    dtype_out,
                    neutral, reduce_expr, map_expr, arguments,
                    name=name+"_stage1", options=options, preamble=preamble,
                    max_group_size=max_group_size)

            kernel_max_wg_size = self.stage_1_inf.kernel.get_work_group_info(
                    cl.kernel_work_group_info.WORK_GROUP_SIZE,
                    ctx.devices[0])

            if self.stage_1_inf.group_size <= kernel_max_wg_size:
                break
            else:
                max_group_size = kernel_max_wg_size

            trip_count += 1
            assert trip_count <= 2

        self.stage_2_inf = get_reduction_kernel(2, ctx,
                dtype_out,
                neutral, reduce_expr, arguments=arguments,
                name=name+"_stage2", options=options, preamble=preamble,
                max_group_size=max_group_size)

        from pytools import any
        from pyopencl.tools import VectorArg
        assert any(
                isinstance(arg_tp, VectorArg)
                for arg_tp in self.stage_1_inf.arg_types), \
                "ReductionKernel can only be used with functions " \
                "that have at least one vector argument"

    def __call__(self, *args, **kwargs):
        MAX_GROUP_COUNT = 1024
        SMALL_SEQ_COUNT = 4

        from pyopencl.array import empty

        stage_inf = self.stage_1_inf

        queue = kwargs.pop("queue", None)
        wait_for = kwargs.pop("wait_for", None)
        return_event = kwargs.pop("return_event", False)

        if kwargs:
            raise TypeError("invalid keyword argument to reduction kernel")

        stage1_args = args

        while True:
            invocation_args = []
            vectors = []

            from pyopencl.tools import VectorArg
            for arg, arg_tp in zip(args, stage_inf.arg_types):
                if isinstance(arg_tp, VectorArg):
                    if not arg.flags.forc:
                        raise RuntimeError("ReductionKernel cannot "
                                "deal with non-contiguous arrays")

                    vectors.append(arg)
                    invocation_args.append(arg.base_data)
                    if arg_tp.with_offset:
                        invocation_args.append(arg.offset)
                else:
                    invocation_args.append(arg)

            repr_vec = vectors[0]
            sz = repr_vec.size

            if queue is not None:
                use_queue = queue
            else:
                use_queue = repr_vec.queue

            if sz <= stage_inf.group_size*SMALL_SEQ_COUNT*MAX_GROUP_COUNT:
                total_group_size = SMALL_SEQ_COUNT*stage_inf.group_size
                group_count = (sz + total_group_size - 1) // total_group_size
                seq_count = SMALL_SEQ_COUNT
            else:
                group_count = MAX_GROUP_COUNT
                macrogroup_size = group_count*stage_inf.group_size
                seq_count = (sz + macrogroup_size - 1) // macrogroup_size

            if group_count == 1:
                result = empty(use_queue,
                        (), self.dtype_out,
                        allocator=repr_vec.allocator)
            else:
                result = empty(use_queue,
                        (group_count,), self.dtype_out,
                        allocator=repr_vec.allocator)

            last_evt = stage_inf.kernel(
                    use_queue,
                    (group_count*stage_inf.group_size,),
                    (stage_inf.group_size,),
                    *([result.data]+invocation_args+[seq_count, sz]),
                    **dict(wait_for=wait_for))
            wait_for = [last_evt]

            if group_count == 1:
                if return_event:
                    return result, last_evt
                else:
                    return result
            else:
                stage_inf = self.stage_2_inf
                args = (result,) + stage1_args

# }}}


# {{{ template

class ReductionTemplate(KernelTemplateBase):
    def __init__(self,
            arguments, neutral, reduce_expr, map_expr=None,
            is_segment_start_expr=None, input_fetch_exprs=[],
            name_prefix="reduce", preamble="", template_processor=None):

        KernelTemplateBase.__init__(
                self, template_processor=template_processor)
        self.arguments = arguments
        self.reduce_expr = reduce_expr
        self.neutral = neutral
        self.map_expr = map_expr
        self.name_prefix = name_prefix
        self.preamble = preamble

    def build_inner(self, context, type_aliases=(), var_values=(),
            more_preamble="", more_arguments=(), declare_types=(),
            options=(), devices=None):
        renderer = self.get_renderer(
                type_aliases, var_values, context, options)

        arg_list = renderer.render_argument_list(
                self.arguments, more_arguments)

        type_decl_preamble = renderer.get_type_decl_preamble(
                context.devices[0], declare_types, arg_list)

        return ReductionKernel(context, renderer.type_aliases["reduction_t"],
                renderer(self.neutral), renderer(self.reduce_expr),
                renderer(self.map_expr),
                renderer.render_argument_list(self.arguments, more_arguments),
                name=renderer(self.name_prefix), options=list(options),
                preamble=(
                    type_decl_preamble
                    + "\n"
                    + renderer(self.preamble + "\n" + more_preamble)))

# }}}


# {{{ array reduction kernel getters

@context_dependent_memoize
def get_any_kernel(ctx, dtype_in):
    from pyopencl.tools import VectorArg
    return ReductionKernel(ctx, np.int8, "false", "a || b",
            map_expr="(bool) (in[i])",
            arguments=[VectorArg(dtype_in, "in")])


@context_dependent_memoize
def get_all_kernel(ctx, dtype_in):
    from pyopencl.tools import VectorArg
    return ReductionKernel(ctx, np.int8, "true", "a && b",
            map_expr="(bool) (in[i])",
            arguments=[VectorArg(dtype_in, "in")])


@context_dependent_memoize
def get_sum_kernel(ctx, dtype_out, dtype_in):
    if dtype_out is None:
        dtype_out = dtype_in

    return ReductionKernel(ctx, dtype_out, "0", "a+b",
            arguments="const %(tp)s *in"
            % {"tp": dtype_to_ctype(dtype_in)})


def _get_dot_expr(dtype_out, dtype_a, dtype_b, conjugate_first,
        has_double_support, index_expr="i"):
    if dtype_b is None:
        if dtype_a is None:
            dtype_b = dtype_out
        else:
            dtype_b = dtype_a

    if dtype_out is None:
        from pyopencl.compyte.array import get_common_dtype
        dtype_out = get_common_dtype(
                dtype_a.type(0), dtype_b.type(0),
                has_double_support)

    a_real_dtype = dtype_a.type(0).real.dtype
    b_real_dtype = dtype_b.type(0).real.dtype
    out_real_dtype = dtype_out.type(0).real.dtype

    a_is_complex = dtype_a.kind == "c"
    b_is_complex = dtype_b.kind == "c"
    out_is_complex = dtype_out.kind == "c"

    from pyopencl.elementwise import complex_dtype_to_name

    if a_is_complex and b_is_complex:
        a = "a[%s]" % index_expr
        b = "b[%s]" % index_expr
        if dtype_a != dtype_out:
            a = "%s_cast(%s)" % (complex_dtype_to_name(dtype_out), a)
        if dtype_b != dtype_out:
            b = "%s_cast(%s)" % (complex_dtype_to_name(dtype_out), b)

        if conjugate_first and a_is_complex:
            a = "%s_conj(%s)" % (
                    complex_dtype_to_name(dtype_out), a)

        map_expr = "%s_mul(%s, %s)" % (
                complex_dtype_to_name(dtype_out), a, b)
    else:
        a = "a[%s]" % index_expr
        b = "b[%s]" % index_expr

        if out_is_complex:
            if a_is_complex and dtype_a != dtype_out:
                a = "%s_cast(%s)" % (complex_dtype_to_name(dtype_out), a)
            if b_is_complex and dtype_b != dtype_out:
                b = "%s_cast(%s)" % (complex_dtype_to_name(dtype_out), b)

            if not a_is_complex and a_real_dtype != out_real_dtype:
                a = "(%s) (%s)" % (dtype_to_ctype(out_real_dtype), a)
            if not b_is_complex and b_real_dtype != out_real_dtype:
                b = "(%s) (%s)" % (dtype_to_ctype(out_real_dtype), b)

        if conjugate_first and a_is_complex:
            a = "%s_conj(%s)" % (
                    complex_dtype_to_name(dtype_out), a)

        map_expr = "%s*%s" % (a, b)

    return map_expr, dtype_out, dtype_b


@context_dependent_memoize
def get_dot_kernel(ctx, dtype_out, dtype_a=None, dtype_b=None,
        conjugate_first=False):
    from pyopencl.characterize import has_double_support
    map_expr, dtype_out, dtype_b = _get_dot_expr(
            dtype_out, dtype_a, dtype_b, conjugate_first,
            has_double_support=has_double_support(ctx.devices[0]))

    return ReductionKernel(ctx, dtype_out, neutral="0",
            reduce_expr="a+b", map_expr=map_expr,
            arguments=
            "const %(tp_a)s *a, "
            "const %(tp_b)s *b" % {
                "tp_a": dtype_to_ctype(dtype_a),
                "tp_b": dtype_to_ctype(dtype_b),
                })


@context_dependent_memoize
def get_subset_dot_kernel(ctx, dtype_out, dtype_subset, dtype_a=None, dtype_b=None,
        conjugate_first=False):
    from pyopencl.characterize import has_double_support
    map_expr, dtype_out, dtype_b = _get_dot_expr(
            dtype_out, dtype_a, dtype_b, conjugate_first,
            has_double_support=has_double_support(ctx.devices[0]),
            index_expr="lookup_tbl[i]")

    # important: lookup_tbl must be first--it controls the length
    return ReductionKernel(ctx, dtype_out, neutral="0",
            reduce_expr="a+b", map_expr=map_expr,
            arguments=
            "const %(tp_lut)s *lookup_tbl, "
            "const %(tp_a)s *a, "
            "const %(tp_b)s *b" % {
            "tp_lut": dtype_to_ctype(dtype_subset),
            "tp_a": dtype_to_ctype(dtype_a),
            "tp_b": dtype_to_ctype(dtype_b),
            })


def get_minmax_neutral(what, dtype):
    dtype = np.dtype(dtype)
    if issubclass(dtype.type, np.inexact):
        if what == "min":
            return "MY_INFINITY"
        elif what == "max":
            return "-MY_INFINITY"
        else:
            raise ValueError("what is not min or max.")
    else:
        if what == "min":
            return str(np.iinfo(dtype).max)
        elif what == "max":
            return str(np.iinfo(dtype).min)
        else:
            raise ValueError("what is not min or max.")


@context_dependent_memoize
def get_minmax_kernel(ctx, what, dtype):
    if dtype.kind == "f":
        reduce_expr = "f%s(a,b)" % what
    elif dtype.kind in "iu":
        reduce_expr = "%s(a,b)" % what
    else:
        raise TypeError("unsupported dtype specified")

    return ReductionKernel(ctx, dtype,
            neutral=get_minmax_neutral(what, dtype),
            reduce_expr="%(reduce_expr)s" % {"reduce_expr": reduce_expr},
            arguments="const %(tp)s *in" % {
                "tp": dtype_to_ctype(dtype),
                }, preamble="#define MY_INFINITY (1./0)")


@context_dependent_memoize
def get_subset_minmax_kernel(ctx, what, dtype, dtype_subset):
    if dtype.kind == "f":
        reduce_expr = "f%s(a,b)" % what
    elif dtype.kind in "iu":
        reduce_expr = "%s(a,b)" % what
    else:
        raise TypeError("unsupported dtype specified")

    return ReductionKernel(ctx, dtype,
            neutral=get_minmax_neutral(what, dtype),
            reduce_expr="%(reduce_expr)s" % {"reduce_expr": reduce_expr},
            map_expr="in[lookup_tbl[i]]",
            arguments=
            "const %(tp_lut)s *lookup_tbl, "
            "const %(tp)s *in" % {
            "tp": dtype_to_ctype(dtype),
            "tp_lut": dtype_to_ctype(dtype_subset),
            }, preamble="#define MY_INFINITY (1./0)")

# }}}

# vim: filetype=pyopencl:fdm=marker