This file is indexed.

/usr/share/pyshared/pymc/ScipyDistributions.py is in python-pymc 2.2+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import scipy.stats.distributions as sc_dst
import inspect
import numpy as np
from pymc import Stochastic
from copy import copy
from .distributions import *

"""
Wraps a SciPy rv object in a PyMC random variable object.
Needs to wrap the following methods:

generic.rvs(<shape(s)>,loc=0,scale=1)
    - random variates

generic.pdf(x,<shape(s)>,loc=0,scale=1)
    - probability density function

generic.cdf(x,<shape(s)>,loc=0,scale=1)
    - cumulative density function

generic.sf(x,<shape(s)>,loc=0,scale=1)
    - survival function (1-cdf --- sometimes more accurate)

generic.ppf(q,<shape(s)>,loc=0,scale=1)
    - percent point function (inverse of cdf --- percentiles)

generic.isf(q,<shape(s)>,loc=0,scale=1)
    - inverse survival function (inverse of sf)

generic.stats(<shape(s)>,loc=0,scale=1,moments='mv')
    - mean('m',axis=0), variance('v'), skew('s'), and/or kurtosis('k')

generic.entropy(<shape(s)>,loc=0,scale=1)
    - (differential) entropy of the RV.
"""
__all__ = ['stochastic_from_scipy_dist']
def separate_shape_args(kwds, shape_args):
    
    new_kwds = {}
    for name in kwds:
        new_kwds[name] = kwds[name]
    
    args = [new_kwds.pop(name) for name in shape_args]
    
    return args, new_kwds

def remove_size_arg(fun):
    def wrapper(size=1,*args, **kwds):
        return fun(*args, **kwds)


def stochastic_from_scipy_dist(scipy_dist):
    """
    Return a Stochastic subclass made from a particular SciPy distribution.
    """
    
    name = scipy_dist.__class__.__name__.replace('_gen','').capitalize()

    
    (args, varargs, varkw, defaults) = inspect.getargspec(scipy_dist._cdf)
    shape_args = args[2:]
    if isinstance(scipy_dist, sc_dst.rv_continuous):
        dtype=float
        
        def logp(value, **kwds):
            args, kwds = separate_shape_args(kwds, shape_args)
            return np.sum(scipy_dist.logpdf(value,*args,**kwds))
        
        parent_names = shape_args + ['loc', 'scale']
        defaults = [None] * (len(parent_names)-2) + [0., 1.]
    
    elif isinstance(scipy_dist, sc_dst.rv_discrete):
        dtype=int
        
        def logp(value, **kwds):
            args, kwds = separate_shape_args(kwds, shape_args)
            return np.sum(scipy_dist.logpmf(value,*args,**kwds))
        
        parent_names = shape_args + ['loc']
        defaults = [None] * (len(parent_names)-1) + [0]
    else:
        return None

    
    parents_default = dict(zip(parent_names, defaults))

    
    def random(shape=None,**kwds):
        args, kwds = separate_shape_args(kwds, shape_args)
        
        if shape is None:
            return scipy_dist.rvs(*args,**kwds)
        else:
            return np.reshape(scipy_dist.rvs(*args,**kwds), shape)
    
    # Build docstring from distribution
    docstr = name[0]+' = '+name + '(name, '+', '.join(parent_names)+', value=None, shape=None, trace=True, rseed=True, doc=None)\n\n'
    docstr += 'Stochastic variable with '+name+' distribution.\nParents are: '+', '.join(parent_names) + '.\n\n'
    docstr += """
Methods:
    
    random()
        - draws random value
          sets value to return value
    
    ppf(q)
        - percent point function (inverse of cdf --- percentiles)
          sets value to return value
    
    isf(q)
        - inverse survival function (inverse of sf)
          sets value to return value
    
    stats(moments='mv')
        - mean('m',axis=0), variance('v'), skew('s'), and/or kurtosis('k')


Attributes:
    
    logp
        - sum(log(pdf())) or sum(log(pmf()))
    
    cdf
        - cumulative distribution function
    
    sf
        - survival function (1-cdf --- sometimes more accurate)
    
    entropy
        - (differential) entropy of the RV.


NOTE: If you encounter difficulties with this object, please try the analogous
computation using the rv objects in scipy.stats.distributions directly before
reporting the bug.
    """
    
    new_class = new_dist_class(dtype, name, parent_names, parents_default, docstr, logp, random, True, None)
    class newer_class(new_class):
        __doc__ = docstr
        rv = scipy_dist
        def __init__(self, *args, **kwds):
            new_class.__init__(self, *args, **kwds)
            self.args, self.kwds = separate_shape_args(self.parents, shape_args)
            self.frozen_rv = self.rv(self.args, self.kwds)
        
        def _pymc_dists_to_value(self, args):
            """Replace arguments that are a pymc.Node with their value."""
            # This is needed because the scipy rv function transforms
            # every input argument which causes new pymc lambda
            # functions to be generated. Thus, when calling this many
            # many times, excessive amounts of RAM are used.
            new_args = []
            for arg in args:
                if isinstance(arg, pm.Node):
                    new_args.append(arg.value)
                else:
                    new_args.append(arg)
            return new_args
        
        def _cdf(self):
            """
            The cumulative distribution function of self conditional on parents
            evaluated at self's current value
            """
            return self.rv.cdf(self.value, *self._pymc_dists_to_value(self.args), **self.kwds)
        cdf = property(_cdf, doc=_cdf.__doc__)
        
        def _sf(self):
            """
            The survival function of self conditional on parents
            evaluated at self's current value
            """
            return self.rv.sf(self.value, *self._pymc_dists_to_value(self.args), **self.kwds)
        sf = property(_sf, doc=_sf.__doc__)
        
        def ppf(self, q):
            """
            The percentile point function (inverse cdf) of self conditional on parents.
            Self's value will be set to the return value.
            """
            self.value = self.rv.ppf(q, *self._pymc_dists_to_value(self.args), **self.kwds)
            return self.value
        
        def isf(self, q):
            """
            The inverse survival function of self conditional on parents.
            Self's value will be set to the return value.
            """
            self.value = self.rv.isf(q, *self._pymc_dists_to_value(self.args), **self.kwds)
            return self.value
        
        def stats(self, moments='mv'):
            """The first few moments of self's distribution conditional on parents"""
            return self.rv.stats(moments=moments, *self._pymc_dists_to_value(self.args), **self.kwds)
        
        def _entropy(self):
            """The entropy of self's distribution conditional on its parents"""
            return self.rv.entropy(*self._pymc_dists_to_value(self.args), **self.kwds)
        entropy = property(_entropy, doc=_entropy.__doc__)
    
    newer_class.__name__ = new_class.__name__
    return newer_class

for scipy_dist_name in sc_dst.__all__:
    scipy_dist = sc_dst.__dict__[scipy_dist_name]
    if isinstance(scipy_dist, sc_dst.rv_continuous) or isinstance(scipy_dist, sc_dst.rv_discrete):
        new_dist = stochastic_from_scipy_dist(scipy_dist)
        locals()[new_dist.__name__] = new_dist
        __all__.append(new_dist.__name__)