This file is indexed.

/usr/lib/python2.7/dist-packages/numexpr/tests/test_numexpr.py is in python-numexpr 2.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
###################################################################
#  Numexpr - Fast numerical array expression evaluator for NumPy.
#
#      License: MIT
#      Author:  See AUTHORS.txt
#
#  See LICENSE.txt and LICENSES/*.txt for details about copyright and
#  rights to use.
####################################################################

import os
import sys
import platform
import warnings

import numpy
from numpy import (
    array, arange, empty, zeros, int32, int64, uint16, complex_, float64, rec,
    copy, ones_like, where, alltrue, linspace,
    sum, prod, sqrt, fmod,
    sin, cos, tan, arcsin, arccos, arctan, arctan2,
    sinh, cosh, tanh, arcsinh, arccosh, arctanh,
    log, log1p, log10, exp, expm1, conj)
from numpy.testing import (assert_equal, assert_array_equal,
    assert_array_almost_equal, assert_allclose)
from numpy import shape, allclose, array_equal, ravel, isnan, isinf

import numexpr
from numexpr import E, NumExpr, evaluate, disassemble, use_vml

import unittest
TestCase = unittest.TestCase

double = numpy.double


# Recommended minimum versions
minimum_numpy_version = "1.6"

class test_numexpr(TestCase):
    """Testing with 1 thread"""
    nthreads = 1

    def setUp(self):
        numexpr.set_num_threads(self.nthreads)

    def test_simple(self):
        ex = 2.0 * E.a + 3.0 * E.b * E.c
        sig = [('a', double), ('b', double), ('c', double)]
        func = NumExpr(ex, signature=sig)
        x = func(array([1., 2, 3]), array([4., 5, 6]), array([7., 8, 9]))
        assert_array_equal(x, array([  86.,  124.,  168.]))

    def test_simple_expr_small_array(self):
        func = NumExpr(E.a)
        x = arange(100.0)
        y = func(x)
        assert_array_equal(x, y)

    def test_simple_expr(self):
        func = NumExpr(E.a)
        x = arange(1e6)
        y = func(x)
        assert_array_equal(x, y)

    def test_rational_expr(self):
        func = NumExpr((E.a + 2.0*E.b) / (1 + E.a + 4*E.b*E.b))
        a = arange(1e6)
        b = arange(1e6) * 0.1
        x = (a + 2*b) / (1 + a + 4*b*b)
        y = func(a, b)
        assert_array_almost_equal(x, y)

    def test_reductions(self):
        # Check that they compile OK.
        assert_equal(disassemble(
            NumExpr("sum(x**2+2, axis=None)", [('x', double)])),
                     [(b'mul_ddd', b't3', b'r1[x]', b'r1[x]'),
                      (b'add_ddd', b't3', b't3', b'c2[2.0]'),
                      (b'sum_ddn', b'r0', b't3', None)])
        assert_equal(disassemble(
            NumExpr("sum(x**2+2, axis=1)", [('x', double)])),
                     [(b'mul_ddd', b't3', b'r1[x]', b'r1[x]'),
                      (b'add_ddd', b't3', b't3', b'c2[2.0]'),
                      (b'sum_ddn', b'r0', b't3', 1)])
        assert_equal(disassemble(
            NumExpr("prod(x**2+2, axis=2)", [('x', double)])),
                     [(b'mul_ddd', b't3', b'r1[x]', b'r1[x]'),
                      (b'add_ddd', b't3', b't3', b'c2[2.0]'),
                      (b'prod_ddn', b'r0', b't3', 2)])
        # Check that full reductions work.
        x = zeros(1e5)+.01   # checks issue #41
        assert_allclose(evaluate("sum(x+2,axis=None)"), sum(x+2,axis=None))
        assert_allclose(evaluate("sum(x+2,axis=0)"), sum(x+2,axis=0))
        assert_allclose(evaluate("prod(x,axis=0)"), prod(x,axis=0))

        x = arange(10.0)
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))

        x = arange(100.0)
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x-1,axis=0)"), prod(x-1,axis=0))
        x = linspace(0.1,1.0,2000)
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x-1,axis=0)"), prod(x-1,axis=0))

        # Check that reductions along an axis work
        y = arange(9.0).reshape(3,3)
        assert_allclose(evaluate("sum(y**2, axis=1)"), sum(y**2, axis=1))
        assert_allclose(evaluate("sum(y**2, axis=0)"), sum(y**2, axis=0))
        assert_allclose(evaluate("sum(y**2, axis=None)"), sum(y**2, axis=None))
        assert_allclose(evaluate("prod(y**2, axis=1)"), prod(y**2, axis=1))
        assert_allclose(evaluate("prod(y**2, axis=0)"), prod(y**2, axis=0))
        assert_allclose(evaluate("prod(y**2, axis=None)"), prod(y**2, axis=None))
        # Check integers
        x = arange(10.)
        x = x.astype(int)
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
        # Check longs
        x = x.astype(long)
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
        # Check complex
        x = x + .1j
        assert_allclose(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_allclose(evaluate("prod(x-1,axis=0)"), prod(x-1,axis=0))

    def test_in_place(self):
        x = arange(10000.).reshape(1000,10)
        evaluate("x + 3", out=x)
        assert_equal(x, arange(10000.).reshape(1000,10) + 3)
        y = arange(10)
        evaluate("(x - 3) * y + (x - 3)", out=x)
        assert_equal(x, arange(10000.).reshape(1000,10) * (arange(10) + 1))

    def test_axis(self):
        y = arange(9.0).reshape(3,3)
        try:
            evaluate("sum(y, axis=2)")
        except ValueError:
            pass
        else:
            raise ValueError("should raise exception!")
        try:
            evaluate("sum(y, axis=-3)")
        except ValueError:
            pass
        else:
            raise ValueError("should raise exception!")
        try:
            # Negative axis are not supported
            evaluate("sum(y, axis=-1)")
        except ValueError:
            pass
        else:
            raise ValueError("should raise exception!")

    def test_r0_reuse(self):
        assert_equal(disassemble(NumExpr("x * x + 2", [('x', double)])),
                    [(b'mul_ddd', b'r0', b'r1[x]', b'r1[x]'),
                     (b'add_ddd', b'r0', b'r0', b'c2[2.0]')])

    def test_str_contains_basic0(self):
        res = evaluate('contains(b"abc", b"ab")')
        assert_equal(res, True)

    def test_str_contains_basic1(self):
        haystack = array([b'abc', b'def', b'xyz', b'x11', b'za'])
        res = evaluate('contains(haystack, b"ab")')
        assert_equal(res, [True, False, False, False, False])

    def test_str_contains_basic2(self):
        haystack = array([b'abc', b'def', b'xyz', b'x11', b'za'])
        res = evaluate('contains(b"abcd", haystack)')
        assert_equal(res, [True, False, False, False, False])

    def test_str_contains_basic3(self):
        haystacks = array(
            [b'abckkk', b'adef', b'xyz', b'x11abcp', b'za', b'abc'])
        needles =   array(
            [b'abc', b'def', b'aterr', b'oot', b'zu', b'ab' ])
        res = evaluate('contains(haystacks, needles)')
        assert_equal(res, [True, True, False, False, False, True])

    def test_str_contains_basic4(self):
        needles =  array(
            [b'abc', b'def', b'aterr', b'oot', b'zu', b'ab c', b' abc',
             b'abc '])
        res = evaluate('contains(b"test abc here", needles)')
        assert_equal(res, [True, False, False, False, False, False, True, True])

    def test_str_contains_basic5(self):
        needles =  array(
            [b'abc', b'ab c', b' abc', b' abc ', b'\tabc', b'c h'])
        res = evaluate('contains(b"test abc here", needles)')
        assert_equal(res, [True, False, True, True, False, True])

   # Compare operation of Python 'in' operator with 'contains' using a
   # product of two lists of strings.
    def test_str_contains_listproduct(self):
        from itertools import product
        small = [
            'It w', 'as th', 'e Whit', 'e Rab', 'bit,', ' tro', 'tting',
            ' sl', 'owly', ' back ', 'again,', ' and', ' lo', 'okin', 'g a',
            'nxious', 'ly a', 'bou', 't a', 's it w', 'ent,', ' as i', 'f it',
            ' had l', 'ost', ' some', 'thi', 'ng; a', 'nd ', 'she ', 'heard ',
            'it mut', 'terin', 'g to ', 'its', 'elf ', "'The",
            ' Duch', 'ess! T', 'he ', 'Duches', 's! Oh ', 'my dea', 'r paws',
             '! Oh ', 'my f', 'ur ', 'and ', 'whiske', 'rs! ', 'She', "'ll g",
            'et me', ' ex', 'ecu', 'ted, ', 'as su', 're a', 's f', 'errets',
            ' are f', 'errets', '! Wh', 'ere ', 'CAN', ' I hav', 'e d',
            'roppe', 'd t', 'hem,', ' I wo', 'nder?', "' A", 'lice',
            ' gu', 'essed', ' in a', ' mom', 'ent ', 'tha', 't it w', 'as ',
            'looki', 'ng f', 'or ', 'the fa', 'n and ', 'the', ' pai',
            'r of w', 'hit', 'e kid', ' glo', 'ves', ', and ', 'she ',
            'very g', 'ood', '-na', 'turedl', 'y be', 'gan h', 'unt', 'ing',
            ' about', ' for t', 'hem', ', but', ' they ', 'wer', 'e nowh',
            'ere to', ' be', ' se', 'en--', 'ever', 'ythin', 'g seem', 'ed ',
            'to ', 'have c', 'hang', 'ed ', 'since', ' he', 'r swim', ' in',
            ' the', ' pool,', ' and', ' the g', 'reat ', 'hal', 'l, w', 'ith',
            ' th', 'e gl', 'ass t', 'abl', 'e and ', 'the', ' li', 'ttle',
            ' doo', 'r, ha', 'd v', 'ani', 'shed c', 'omp', 'lete', 'ly.']
        big = [
            'It wa', 's the', ' W', 'hit', 'e ', 'Ra', 'bb', 'it, t', 'ro',
            'tting s', 'lowly', ' back ', 'agai', 'n, and', ' l', 'ookin',
            'g ', 'an', 'xiously', ' about ', 'as it w', 'ent, as', ' if ',
            'it had', ' los', 't ', 'so', 'mething', '; and', ' she h',
            'eard ', 'it ', 'mutteri', 'ng to', ' itself', " 'The ",
            'Duchess', '! ', 'Th', 'e ', 'Duchess', '! Oh m', 'y de',
            'ar paws', '! ', 'Oh my ', 'fu', 'r and w', 'hiskers', "! She'",
            'll ', 'get', ' me ', 'execute', 'd,', ' a', 's ', 'su', 're as ',
            'fe', 'rrets', ' are f', 'errets!', ' Wher', 'e CAN', ' I ha',
            've dro', 'pped t', 'hem', ', I ', 'won', "der?' A",
            'lice g', 'uess', 'ed ', 'in a m', 'omen', 't that', ' i',
            't was l', 'ook', 'ing f', 'or th', 'e ', 'fan and', ' th', 'e p',
            'air o', 'f whit', 'e ki', 'd glove', 's, and ', 'she v', 'ery ',
            'good-na', 'tu', 'redl', 'y be', 'gan hun', 'ti', 'ng abou',
            't for t', 'he', 'm, bu', 't t', 'hey ', 'were n', 'owhere',
            ' to b', 'e s', 'een-', '-eve', 'rythi', 'ng see', 'me', 'd ',
            'to ha', 've', ' c', 'hanged', ' sinc', 'e her s', 'wim ',
            'in the ', 'pool,', ' an', 'd the g', 'rea', 't h', 'all, wi',
            'th the ', 'glas', 's t', 'able an', 'd th', 'e littl', 'e door,',
            ' had va', 'ni', 'shed co', 'mpletel', 'y.']
        p = list(product(small, big))
        python_in = [x[0] in x[1] for x in p]
        a = [x[0].encode() for x in p]
        b = [x[1].encode() for x in p]
        res = [bool(x) for x in evaluate('contains(b, a)')]
        assert_equal(res, python_in)

    def test_str_contains_withemptystr1(self):
        withemptystr = array([b'abc', b'def', b''])
        res = evaluate('contains(b"abcd", withemptystr)')
        assert_equal(res, [True, False, True])

    def test_str_contains_withemptystr2(self):
        withemptystr = array([b'abc', b'def', b''])
        res = evaluate('contains(withemptystr, b"")')
        assert_equal(res, [True, True, True])


class test_numexpr2(test_numexpr):
    """Testing with 2 threads"""
    nthreads = 2


class test_evaluate(TestCase):
    def test_simple(self):
        a = array([1., 2., 3.])
        b = array([4., 5., 6.])
        c = array([7., 8., 9.])
        x = evaluate("2*a + 3*b*c")
        assert_array_equal(x, array([  86.,  124.,  168.]))

    def test_simple_expr_small_array(self):
        x = arange(100.0)
        y = evaluate("x")
        assert_array_equal(x, y)

    def test_simple_expr(self):
        x = arange(1e6)
        y = evaluate("x")
        assert_array_equal(x, y)

    # Test for issue #37
    if sys.version_info[0] < 3:
        # In python 3 '/' perforns true division, not integer division.
        # Integer division '//' is still not suppoerted by numexpr
        def test_zero_div(self):
            x = arange(100, dtype='i4')
            y = evaluate("1/x")
            x2 = zeros(100, dtype='i4')
            x2[1] = 1
            assert_array_equal(x2, y)

    # Test for issue #22
    def test_true_div(self):
        x = arange(10, dtype='i4')
        assert_array_equal(evaluate("x/2"), x / 2)
        assert_array_equal(evaluate("x/2", truediv=False), x / 2)
        assert_array_equal(evaluate("x/2", truediv='auto'), x / 2)
        assert_array_equal(evaluate("x/2", truediv=True), x / 2.0)

    def test_left_shift(self):
        x = arange(10, dtype='i4')
        assert_array_equal(evaluate("x<<2"), x << 2)

    def test_right_shift(self):
        x = arange(10, dtype='i4')
        assert_array_equal(evaluate("x>>2"), x >> 2)

    # PyTables uses __nonzero__ among ExpressionNode objects internally
    # so this should be commented out for the moment.  See #24.
    def test_boolean_operator(self):
        x = arange(10, dtype='i4')
        try:
            evaluate("(x > 1) and (x < 9)")
        except TypeError:
            pass
        else:
            raise ValueError("should raise exception!")

    def test_rational_expr(self):
        a = arange(1e6)
        b = arange(1e6) * 0.1
        x = (a + 2*b) / (1 + a + 4*b*b)
        y = evaluate("(a + 2*b) / (1 + a + 4*b*b)")
        assert_array_almost_equal(x, y)

    def test_complex_expr(self):
        def complex(a, b):
            c = zeros(a.shape, dtype=complex_)
            c.real = a
            c.imag = b
            return c
        a = arange(1e4)
        b = arange(1e4)**1e-5
        z = a + 1j*b
        x = z.imag
        x = sin(complex(a, b)).real + z.imag
        y = evaluate("sin(complex(a, b)).real + z.imag")
        assert_array_almost_equal(x, y)

    def test_complex_strides(self):
        a = arange(100).reshape(10,10)[::2]
        b = arange(50).reshape(5,10)
        assert_array_equal(evaluate("a+b"), a+b)
        c = empty([10], dtype=[('c1', int32), ('c2', uint16)])
        c['c1'] = arange(10)
        c['c2'].fill(0xaaaa)
        c1 = c['c1']
        a0 = a[0]
        assert_array_equal(evaluate("c1"), c1)
        assert_array_equal(evaluate("a0+c1"), a0+c1)

    def test_broadcasting(self):
        a = arange(100).reshape(10,10)[::2]
        c = arange(10)
        d = arange(5).reshape(5,1)
        assert_array_equal(evaluate("a+c"), a+c)
        assert_array_equal(evaluate("a+d"), a+d)
        expr = NumExpr("2.0*a+3.0*c",[('a', double),('c', double)])
        assert_array_equal(expr(a,c), 2.0*a+3.0*c)

    def test_all_scalar(self):
        a = 3.
        b = 4.
        assert_allclose(evaluate("a+b"), a+b)
        expr = NumExpr("2*a+3*b",[('a', double),('b', double)])
        assert_equal(expr(a,b), 2*a+3*b)

    def test_run(self):
        a = arange(100).reshape(10,10)[::2]
        b = arange(10)
        expr = NumExpr("2*a+3*b",[('a', double),('b', double)])
        assert_array_equal(expr(a,b), expr.run(a,b))

    def test_illegal_value(self):
        a = arange(3)
        try:
            evaluate("a < [0, 0, 0]")
        except TypeError:
            pass
        else:
            self.fail()

    if 'sparc' not in platform.machine():
        # Execution order set here so as to not use too many threads
        # during the rest of the execution.  See #33 for details.
        def test_changing_nthreads_00_inc(self):
            a = linspace(-1, 1, 1e6)
            b = ((.25*a + .75)*a - 1.5)*a - 2
            for nthreads in range(1,7):
                numexpr.set_num_threads(nthreads)
                c = evaluate("((.25*a + .75)*a - 1.5)*a - 2")
                assert_array_almost_equal(b, c)

        def test_changing_nthreads_01_dec(self):
            a = linspace(-1, 1, 1e6)
            b = ((.25*a + .75)*a - 1.5)*a - 2
            for nthreads in range(6, 1, -1):
                numexpr.set_num_threads(nthreads)
                c = evaluate("((.25*a + .75)*a - 1.5)*a - 2")
                assert_array_almost_equal(b, c)


tests = [
('MISC', ['b*c+d*e',
          '2*a+3*b',
          '-a',
          'sinh(a)',
          '2*a + (cos(3)+5)*sinh(cos(b))',
          '2*a + arctan2(a, b)',
          'arcsin(0.5)',
          'where(a != 0.0, 2, a)',
          'where(a > 10, b < a, b > a)',
          'where((a-10).real != 0.0, a, 2)',
          '0.25 * (a < 5) + 0.33 * (a >= 5)',
          'cos(1+1)',
          '1+1',
          '1',
          'cos(a2)',
          ])]

optests = []
for op in list('+-*/%') + ['**']:
    optests.append("(a+1) %s (b+3)" % op)
    optests.append("3 %s (b+3)" % op)
    optests.append("(a+1) %s 4" % op)
    optests.append("2 %s (b+3)" % op)
    optests.append("(a+1) %s 2" % op)
    optests.append("(a+1) %s -1" % op)
    optests.append("(a+1) %s 0.5" % op)
    # Check divisions and modulus by zero (see ticket #107)
    optests.append("(a+1) %s 0" % op)
tests.append(('OPERATIONS', optests))

cmptests = []
for op in ['<', '<=', '==', '>=', '>', '!=']:
    cmptests.append("a/2+5 %s b" % op)
    cmptests.append("a/2+5 %s 7" % op)
    cmptests.append("7 %s b" % op)
    cmptests.append("7.0 %s 5" % op)
tests.append(('COMPARISONS', cmptests))

func1tests = []
for func in ['copy', 'ones_like', 'sqrt',
             'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan',
             'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh',
             'log', 'log1p', 'log10', 'exp', 'expm1', 'abs', 'conj']:
    func1tests.append("a + %s(b+c)" % func)
tests.append(('1_ARG_FUNCS', func1tests))

func2tests = []
for func in ['arctan2', 'fmod']:
    func2tests.append("a + %s(b+c, d+1)" % func)
    func2tests.append("a + %s(b+c, 1)" % func)
    func2tests.append("a + %s(1, d+1)" % func)
tests.append(('2_ARG_FUNCS', func2tests))

powtests = []
# n = -1, 0.5, 2, 4 already handled in section "OPERATIONS"
for n in (-7, -2.5, -1.5, -1.3, -.5, 0, 0.0, 1, 2.3, 2.5, 3):
    powtests.append("(a+1)**%s" % n)
tests.append(('POW_TESTS', powtests))

def equal(a, b, exact):
    if array_equal(a, b):
        return True

    if hasattr(a, 'dtype') and a.dtype in ['f4','f8']:
        nnans = isnan(a).sum()
        if nnans > 0:
            # For results containing NaNs, just check that the number
            # of NaNs is the same in both arrays.  This check could be
            # made more exhaustive, but checking element by element in
            # python space is very expensive in general.
            return nnans == isnan(b).sum()
        ninfs = isinf(a).sum()
        if ninfs > 0:
            # Ditto for Inf's
            return ninfs == isinf(b).sum()
    if exact:
        return (shape(a) == shape(b)) and alltrue(ravel(a) == ravel(b), axis=0)
    else:
        if hasattr(a, 'dtype') and a.dtype == 'f4':
            atol = 1e-5   # Relax precission for special opcodes, like fmod
        else:
            atol = 1e-8
        return (shape(a) == shape(b) and
                allclose(ravel(a), ravel(b), atol=atol))

class Skip(Exception): pass

def test_expressions():
    test_no = [0]
    def make_test_method(a, a2, b, c, d, e, x, expr,
                         test_scalar, dtype, optimization, exact, section):
        this_locals = locals()
        def method():
            # We don't want to listen at RuntimeWarnings like
            # "overflows" or "divide by zero" in plain eval().
            warnings.simplefilter("ignore")
            npval = eval(expr, globals(), this_locals)
            warnings.simplefilter("always")
            npval = eval(expr, globals(), this_locals)
            try:
                neval = evaluate(expr, local_dict=this_locals,
                                 optimization=optimization)
                assert equal(npval, neval, exact), """%r
(test_scalar=%r, dtype=%r, optimization=%r, exact=%r,
 npval=%r (%r - %r)\n neval=%r (%r - %r))""" % (expr, test_scalar, dtype.__name__,
                                     optimization, exact,
                                     npval, type(npval), shape(npval),
                                     neval, type(neval), shape(neval))
            except AssertionError:
                raise
            except NotImplementedError:
                print('%r not implemented for %s (scalar=%d, opt=%s)'
                      % (expr, dtype.__name__, test_scalar, optimization))
            except:
                print('numexpr error for expression %r' % (expr,))
                raise
        method.description = ('test_expressions(%s, test_scalar=%r, '
                              'dtype=%r, optimization=%r, exact=%r)') \
                    % (expr, test_scalar, dtype.__name__, optimization, exact)
        test_no[0] += 1
        method.__name__ = 'test_scalar%d_%s_%s_%s_%04d' % (test_scalar,
                                                           dtype.__name__,
                                                           optimization.encode('ascii'),
                                                           section.encode('ascii'),
                                                           test_no[0])
        return method
    x = None
    for test_scalar in (0, 1, 2):
        for dtype in (int, long, numpy.float32, double, complex):
            array_size = 100
            a = arange(2*array_size, dtype=dtype)[::2]
            a2 = zeros([array_size, array_size], dtype=dtype)
            b = arange(array_size, dtype=dtype) / array_size
            c = arange(array_size, dtype=dtype)
            d = arange(array_size, dtype=dtype)
            e = arange(array_size, dtype=dtype)
            if dtype == complex:
                a = a.real
                for x in [a2, b, c, d, e]:
                    x += 1j
                    x *= 1+1j
            if test_scalar == 1:
                a = a[array_size // 2]
            if test_scalar == 2:
                b = b[array_size // 2]
            for optimization, exact in [
                ('none', False), ('moderate', False), ('aggressive', False)]:
                for section_name, section_tests in tests:
                    for expr in section_tests:
                        if dtype == complex and (
                               '<' in expr or '>' in expr or '%' in expr
                               or "arctan2" in expr or "fmod" in expr):
                            # skip complex comparisons or functions not
                            # defined in complex domain.
                            continue
                        if (dtype in (int, long) and test_scalar and
                            expr == '(a+1) ** -1'):
                            continue

                        m = make_test_method(a, a2, b, c, d, e, x,
                                             expr, test_scalar, dtype,
                                             optimization, exact,
                                             section_name)
                        yield m

class test_int64(TestCase):
    def test_neg(self):
        a = array([2**31-1, 2**31, 2**32, 2**63-1], dtype=int64)
        res = evaluate('-a')
        assert_array_equal(res, [1-2**31, -(2**31), -(2**32), 1-2**63])
        self.assertEqual(res.dtype.name, 'int64')

class test_int32_int64(TestCase):
    if sys.version_info[0] < 2:
        # no long literals in python 3
        def test_small_long(self):
            # Small longs should not be downgraded to ints.
            res = evaluate('42L')
            assert_array_equal(res, 42)
            self.assertEqual(res.dtype.name, 'int64')

    def test_small_int(self):
        # Small ints (32-bit ones) should not be promoted to longs.
        res = evaluate('2')
        assert_array_equal(res, 2)
        self.assertEqual(res.dtype.name, 'int32')

    def test_big_int(self):
        # Big ints should be promoted to longs.
        res = evaluate('2**40')
        assert_array_equal(res, 2**40)
        self.assertEqual(res.dtype.name, 'int64')

    def test_long_constant_promotion(self):
        int32array = arange(100, dtype='int32')
        itwo = numpy.int32(2)
        ltwo = numpy.int64(2)
        res = int32array * 2
        res32 = evaluate('int32array * itwo')
        res64 = evaluate('int32array * ltwo')
        assert_array_equal(res, res32)
        assert_array_equal(res, res64)
        self.assertEqual(res32.dtype.name, 'int32')
        self.assertEqual(res64.dtype.name, 'int64')

    def test_int64_array_promotion(self):
        int32array = arange(100, dtype='int32')
        int64array = arange(100, dtype='int64')
        respy = int32array * int64array
        resnx = evaluate('int32array * int64array')
        assert_array_equal(respy, resnx)
        self.assertEqual(resnx.dtype.name, 'int64')


class test_uint32_int64(TestCase):
    def test_small_uint32(self):
        # Small uint32 should not be downgraded to ints.
        a = numpy.uint32(42)
        res = evaluate('a')
        assert_array_equal(res, 42)
        self.assertEqual(res.dtype.name, 'int64')

    def test_uint32_constant_promotion(self):
        int32array = arange(100, dtype='int32')
        stwo = numpy.int32(2)
        utwo = numpy.uint32(2)
        res = int32array * utwo
        res32 = evaluate('int32array * stwo')
        res64 = evaluate('int32array * utwo')
        assert_array_equal(res, res32)
        assert_array_equal(res, res64)
        self.assertEqual(res32.dtype.name, 'int32')
        self.assertEqual(res64.dtype.name, 'int64')

    def test_int64_array_promotion(self):
        uint32array = arange(100, dtype='uint32')
        int64array = arange(100, dtype='int64')
        respy = uint32array * int64array
        resnx = evaluate('uint32array * int64array')
        assert_array_equal(respy, resnx)
        self.assertEqual(resnx.dtype.name, 'int64')


class test_strings(TestCase):
    BLOCK_SIZE1 = 128
    BLOCK_SIZE2 = 8
    str_list1 = [b'foo', b'bar', b'', b'  ']
    str_list2 = [b'foo', b'', b'x', b' ']
    str_nloops = len(str_list1) * (BLOCK_SIZE1 + BLOCK_SIZE2 + 1)
    str_array1 = array(str_list1 * str_nloops)
    str_array2 = array(str_list2 * str_nloops)
    str_constant = b'doodoo'

    def test_null_chars(self):
        str_list = [
            b'\0\0\0', b'\0\0foo\0', b'\0\0foo\0b', b'\0\0foo\0b\0',
            b'foo\0', b'foo\0b', b'foo\0b\0', b'foo\0bar\0baz\0\0' ]
        for s in str_list:
            r = evaluate('s')
            self.assertEqual(s, r.tostring())  # check *all* stored data

    def test_compare_copy(self):
        sarr = self.str_array1
        expr = 'sarr'
        res1 = eval(expr)
        res2 = evaluate(expr)
        assert_array_equal(res1, res2)

    def test_compare_array(self):
        sarr1 = self.str_array1
        sarr2 = self.str_array2
        expr = 'sarr1 >= sarr2'
        res1 = eval(expr)
        res2 = evaluate(expr)
        assert_array_equal(res1, res2)

    def test_compare_variable(self):
        sarr = self.str_array1
        svar = self.str_constant
        expr = 'sarr >= svar'
        res1 = eval(expr)
        res2 = evaluate(expr)
        assert_array_equal(res1, res2)

    def test_compare_constant(self):
        sarr = self.str_array1
        expr = 'sarr >= %r' % self.str_constant
        res1 = eval(expr)
        res2 = evaluate(expr)
        assert_array_equal(res1, res2)

    def test_add_string_array(self):
        sarr1 = self.str_array1
        sarr2 = self.str_array2
        expr = 'sarr1 + sarr2'
        self.assert_missing_op('add_sss', expr, locals())

    def test_add_numeric_array(self):
        sarr = self.str_array1
        narr = arange(len(sarr), dtype='int32')
        expr = 'sarr >= narr'
        self.assert_missing_op('ge_bsi', expr, locals())

    def assert_missing_op(self, op, expr, local_dict):
        msg = "expected NotImplementedError regarding '%s'" % op
        try:
            evaluate(expr, local_dict)
        except NotImplementedError, nie:
            if "'%s'" % op not in nie.args[0]:
                self.fail(msg)
        else:
            self.fail(msg)

    def test_compare_prefix(self):
        # Check comparing two strings where one is a prefix of the
        # other.
        for s1, s2 in [ (b'foo', b'foobar'), (b'foo', b'foo\0bar'),
                        (b'foo\0a', b'foo\0bar') ]:
            self.assertTrue(evaluate('s1 < s2'))
            self.assertTrue(evaluate('s1 <= s2'))
            self.assertTrue(evaluate('~(s1 == s2)'))
            self.assertTrue(evaluate('~(s1 >= s2)'))
            self.assertTrue(evaluate('~(s1 > s2)'))

        # Check for NumPy array-style semantics in string equality.
        s1, s2 = b'foo', b'foo\0\0'
        self.assertTrue(evaluate('s1 == s2'))

# Case for testing selections in fields which are aligned but whose
# data length is not an exact multiple of the length of the record.
# The following test exposes the problem only in 32-bit machines,
# because in 64-bit machines 'c2' is unaligned.  However, this should
# check most platforms where, while not unaligned, 'len(datatype) >
# boundary_alignment' is fullfilled.
class test_irregular_stride(TestCase):
    def test_select(self):
        f0 = arange(10, dtype=int32)
        f1 = arange(10, dtype=float64)

        irregular = rec.fromarrays([f0, f1])

        f0 = irregular['f0']
        f1 = irregular['f1']

        i0 = evaluate('f0 < 5')
        i1 = evaluate('f1 < 5')

        assert_array_equal(f0[i0], arange(5, dtype=int32))
        assert_array_equal(f1[i1], arange(5, dtype=float64))

# Cases for testing arrays with dimensions that can be zero.
class test_zerodim(TestCase):

    def test_zerodim1d(self):
        a0 = array([], dtype=int32)
        a1 = array([], dtype=float64)

        r0 = evaluate('a0 + a1')
        r1 = evaluate('a0 * a1')

        assert_array_equal(r0, a1)
        assert_array_equal(r1, a1)

    def test_zerodim3d(self):
        a0 = array([], dtype=int32).reshape(0,2,4)
        a1 = array([], dtype=float64).reshape(0,2,4)

        r0 = evaluate('a0 + a1')
        r1 = evaluate('a0 * a1')

        assert_array_equal(r0, a1)
        assert_array_equal(r1, a1)

# Case test for threads
class test_threading(TestCase):
    def test_thread(self):
        import threading
        class ThreadTest(threading.Thread):
            def run(self):
                a = arange(3)
                assert_array_equal(evaluate('a**3'), array([0, 1, 8]))
        test = ThreadTest()
        test.start()

# The worker function for the subprocess (needs to be here because Windows
# has problems pickling nested functions with the multiprocess module :-/)
def _worker(qout = None):
    ra = numpy.arange(1e3)
    rows = evaluate('ra > 0')
    #print "Succeeded in evaluation!\n"
    if qout is not None:
        qout.put("Done")

# Case test for subprocesses (via multiprocessing module)
class test_subprocess(TestCase):
    def test_multiprocess(self):
        try:
            import multiprocessing as mp
        except ImportError:
            return
        # Check for two threads at least
        numexpr.set_num_threads(2)
        #print "**** Running from main process:"
        _worker()
        #print "**** Running from subprocess:"
        qout = mp.Queue()
        ps = mp.Process(target=_worker, args=(qout,))
        ps.daemon = True
        ps.start()

        result = qout.get()
        #print result




def print_versions():
    """Print the versions of software that numexpr relies on."""
    if numpy.__version__ < minimum_numpy_version:
        print "*Warning*: NumPy version is lower than recommended: %s < %s" % \
              (numpy.__version__, minimum_numpy_version)
    print '-=' * 38
    print "Numexpr version:   %s" % numexpr.__version__
    print "NumPy version:     %s" % numpy.__version__
    print 'Python version:    %s' % sys.version
    if os.name == 'posix':
        (sysname, nodename, release, version, machine) = os.uname()
        print 'Platform:          %s-%s' % (sys.platform, machine)
    print "AMD/Intel CPU?     %s" % numexpr.is_cpu_amd_intel
    print "VML available?     %s" % use_vml
    if use_vml:
        print "VML/MKL version:   %s" % numexpr.get_vml_version()
    print ("Number of threads used by default: %d "
           "(out of %d detected cores)" % (numexpr.nthreads, numexpr.ncores))
    print '-=' * 38


def test():
    """
    Run all the tests in the test suite.
    """

    print_versions()
    return unittest.TextTestRunner().run(suite())
test.__test__ = False


def suite():
    import unittest
    import platform as pl

    theSuite = unittest.TestSuite()
    niter = 1

    class TestExpressions(TestCase):
        pass

    def add_method(func):
        def method(self):
            return func()
        setattr(TestExpressions, func.__name__,
                method.__get__(None, TestExpressions))

    for func in test_expressions():
        add_method(func)

    for n in range(niter):
        theSuite.addTest(unittest.makeSuite(test_numexpr))
        if 'sparc' not in platform.machine():
            theSuite.addTest(unittest.makeSuite(test_numexpr2))
        theSuite.addTest(unittest.makeSuite(test_evaluate))
        theSuite.addTest(unittest.makeSuite(TestExpressions))
        theSuite.addTest(unittest.makeSuite(test_int32_int64))
        theSuite.addTest(unittest.makeSuite(test_uint32_int64))
        theSuite.addTest(unittest.makeSuite(test_strings))
        theSuite.addTest(
            unittest.makeSuite(test_irregular_stride) )
        theSuite.addTest(unittest.makeSuite(test_zerodim))

        # multiprocessing module is not supported on Hurd/kFreeBSD
        if (pl.system().lower() not in ('gnu', 'gnu/kfreebsd')):
            theSuite.addTest(unittest.makeSuite(test_subprocess))

        # I need to put this test after test_subprocess because
        # if not, the test suite locks immediately before test_subproces.
        # This only happens with Windows, so I suspect of a subtle bad
        # interaction with threads and subprocess :-/
        theSuite.addTest(unittest.makeSuite(test_threading))

    return theSuite

if __name__ == '__main__':
    print_versions()
    unittest.main(defaultTest = 'suite')
#    suite = suite()
#    unittest.TextTestRunner(verbosity=2).run(suite)