This file is indexed.

/usr/lib/python2.7/dist-packages/numexpr/expressions.py is in python-numexpr 2.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
###################################################################
#  Numexpr - Fast numerical array expression evaluator for NumPy.
#
#      License: MIT
#      Author:  See AUTHORS.txt
#
#  See LICENSE.txt and LICENSES/*.txt for details about copyright and
#  rights to use.
####################################################################

__all__ = ['E']

import operator
import sys
import threading

import numpy

# Declare a double type that does not exist in Python space
double = numpy.double

# The default kind for undeclared variables
default_kind = 'double'
if sys.version_info[0] < 3:
    int_ = int
    long_ = long
else:
    int_ = numpy.int32
    long_ = numpy.int64

type_to_kind = {bool: 'bool', int_: 'int', long_: 'long', float: 'float',
                double: 'double', complex: 'complex', bytes: 'bytes'}
kind_to_type = {'bool': bool, 'int': int_, 'long': long_, 'float': float,
                'double': double, 'complex': complex, 'bytes': bytes}
kind_rank = ['bool', 'int', 'long', 'float', 'double', 'complex', 'none']
scalar_constant_types = [bool, int_, long, float, double, complex, bytes]

# Final corrections for Python 3 (mainly for PyTables needs)
if sys.version_info[0] > 2:
    type_to_kind[str] = 'str'
    kind_to_type['str'] = str
    scalar_constant_types.append(str)
scalar_constant_types = tuple(scalar_constant_types)


from numexpr import interpreter

class Expression(object):
    def __init__(self):
        object.__init__(self)

    def __getattr__(self, name):
        if name.startswith('_'):
            return self.__dict__[name]
        else:
            return VariableNode(name, default_kind)

E = Expression()

class Context(threading.local):
    initialized = False
    def __init__(self, dict_):
        if self.initialized:
            raise SystemError('__init__ called too many times')
        self.initialized = True
        self.__dict__.update(dict_)
    def get(self, value, default):
        return self.__dict__.get(value, default)
    def get_current_context(self):
        return self.__dict__
    def set_new_context(self, dict_):
        self.__dict__.update(dict_)

# This will be called each time the local object is used in a separate thread
_context = Context({})

def get_optimization():
    return _context.get('optimization', 'none')

# helper functions for creating __magic__ methods
def ophelper(f):
    def func(*args):
        args = list(args)
        for i, x in enumerate(args):
            if isConstant(x):
                args[i] = x = ConstantNode(x)
            if not isinstance(x, ExpressionNode):
                raise TypeError("unsupported object type: %s" % type(x))
        return f(*args)
    func.__name__ = f.__name__
    func.__doc__ = f.__doc__
    func.__dict__.update(f.__dict__)
    return func

def allConstantNodes(args):
    "returns True if args are all ConstantNodes."
    for x in args:
        if not isinstance(x, ConstantNode):
            return False
    return True

def isConstant(ex):
    "Returns True if ex is a constant scalar of an allowed type."
    return isinstance(ex, scalar_constant_types)

def commonKind(nodes):
    node_kinds = [node.astKind for node in nodes]
    str_count = node_kinds.count('bytes') + node_kinds.count('str')
    if 0 < str_count < len(node_kinds):  # some args are strings, but not all
        raise TypeError("strings can only be operated with strings")
    if str_count > 0:  # if there are some, all of them must be
        return 'bytes'
    n = -1
    for x in nodes:
        n = max(n, kind_rank.index(x.astKind))
    return kind_rank[n]

max_int32 = 2147483647
min_int32 = -max_int32 - 1

def bestConstantType(x):
    # ``numpy.string_`` is a subclass of ``bytes``
    if isinstance(x, (bytes, str)):
        return bytes
    # Numeric conversion to boolean values is not tried because
    # ``bool(1) == True`` (same for 0 and False), so 0 and 1 would be
    # interpreted as booleans when ``False`` and ``True`` are already
    # supported.
    if isinstance(x, (bool, numpy.bool_)):
        return bool
    # ``long`` objects are kept as is to allow the user to force
    # promotion of results by using long constants, e.g. by operating
    # a 32-bit array with a long (64-bit) constant.
    if isinstance(x, (long_, numpy.int64)):
        return long_
    # ``double`` objects are kept as is to allow the user to force
    # promotion of results by using double constants, e.g. by operating
    # a float (32-bit) array with a double (64-bit) constant.
    if isinstance(x, double):
        return double
    if isinstance(x, (int, numpy.integer)):
        # Constants needing more than 32 bits are always
        # considered ``long``, *regardless of the platform*, so we
        # can clearly tell 32- and 64-bit constants apart.
        if not (min_int32 <= x <= max_int32):
            return long_
        return int_
    # The duality of float and double in Python avoids that we have to list
    # ``double`` too.
    for converter in float, complex:
        try:
            y = converter(x)
        except StandardError, err:
            continue
        if y == x:
            return converter


def getKind(x):
    converter = bestConstantType(x)
    return type_to_kind[converter]

def binop(opname, reversed=False, kind=None):
    # Getting the named method from self (after reversal) does not
    # always work (e.g. int constants do not have a __lt__ method).
    opfunc = getattr(operator, "__%s__" % opname)
    @ophelper
    def operation(self, other):
        if reversed:
            self, other = other, self
        if allConstantNodes([self, other]):
            return ConstantNode(opfunc(self.value, other.value))
        else:
            return OpNode(opname, (self, other), kind=kind)
    return operation

def func(func, minkind=None, maxkind=None):
    @ophelper
    def function(*args):
        if allConstantNodes(args):
            return ConstantNode(func(*[x.value for x in args]))
        kind = commonKind(args)
        if kind in ('int', 'long'):
            # Exception for following NumPy casting rules
            #FIXME: this is not always desirable. The following
            # functions which return ints (for int inputs) on numpy
            # but not on numexpr: copy, abs, fmod, ones_like
            kind = 'double'
        else:
            # Apply regular casting rules
            if minkind and kind_rank.index(minkind) > kind_rank.index(kind):
                kind = minkind
            if maxkind and kind_rank.index(maxkind) < kind_rank.index(kind):
                kind = maxkind
        return FuncNode(func.__name__, args, kind)
    return function

@ophelper
def where_func(a, b, c):
    if isinstance(a, ConstantNode):
        #FIXME: This prevents where(True, a, b)
        raise ValueError("too many dimensions")
    if allConstantNodes([a,b,c]):
        return ConstantNode(numpy.where(a, b, c))
    return FuncNode('where', [a,b,c])

def encode_axis(axis):
    if isinstance(axis, ConstantNode):
        axis = axis.value
    if axis is None:
        axis = interpreter.allaxes
    else:
        if axis < 0:
            raise ValueError("negative axis are not supported")
        if axis > 254:
            raise ValueError("cannot encode axis")
    return RawNode(axis)

def sum_func(a, axis=None):
    axis = encode_axis(axis)
    if isinstance(a, ConstantNode):
        return a
    if isinstance(a, (bool, int_, long_, float, double, complex)):
        a = ConstantNode(a)
    return FuncNode('sum', [a, axis], kind=a.astKind)

def prod_func(a, axis=None):
    axis = encode_axis(axis)
    if isinstance(a, (bool, int_, long_, float, double, complex)):
        a = ConstantNode(a)
    if isinstance(a, ConstantNode):
        return a
    return FuncNode('prod', [a, axis], kind=a.astKind)

@ophelper
def contains_func(a, b):
    return FuncNode('contains', [a, b], kind='bool')

@ophelper
def div_op(a, b):
    if get_optimization() in ('moderate', 'aggressive'):
        if (isinstance(b, ConstantNode) and
            (a.astKind == b.astKind) and
            a.astKind in ('float', 'double', 'complex')):
            return OpNode('mul', [a, ConstantNode(1./b.value)])
    return OpNode('div', [a,b])

@ophelper
def truediv_op(a, b):
    if get_optimization() in ('moderate', 'aggressive'):
        if (isinstance(b, ConstantNode) and
            (a.astKind == b.astKind) and
            a.astKind in ('float', 'double', 'complex')):
            return OpNode('mul', [a, ConstantNode(1./b.value)])
    kind = commonKind([a, b])
    if kind in ('bool', 'int', 'long'):
        kind = 'double'
    return OpNode('div', [a, b], kind=kind)

@ophelper
def rtruediv_op(a, b):
    return truediv_op(b, a)

@ophelper
def pow_op(a, b):
    if allConstantNodes([a, b]):
        return ConstantNode(a**b)
    if isinstance(b, ConstantNode):
        x = b.value
        if get_optimization() == 'aggressive':
            RANGE = 50 # Approximate break even point with pow(x,y)
            # Optimize all integral and half integral powers in [-RANGE, RANGE]
            # Note: for complex numbers RANGE could be larger.
            if (int(2*x) == 2*x) and (-RANGE <= abs(x) <= RANGE):
                n = int_(abs(x))
                ishalfpower = int_(abs(2*x)) % 2
                def multiply(x, y):
                    if x is None: return y
                    return OpNode('mul', [x, y])
                r = None
                p = a
                mask = 1
                while True:
                    if (n & mask):
                        r = multiply(r, p)
                    mask <<= 1
                    if mask > n:
                        break
                    p = OpNode('mul', [p,p])
                if ishalfpower:
                    kind = commonKind([a])
                    if kind in ('int', 'long'):
                        kind = 'double'
                    r = multiply(r, OpNode('sqrt', [a], kind))
                if r is None:
                    r = OpNode('ones_like', [a])
                if x < 0:
                    r = OpNode('div', [ConstantNode(1), r])
                return r
        if get_optimization() in ('moderate', 'aggressive'):
            if x == -1:
                return OpNode('div', [ConstantNode(1),a])
            if x == 0:
                return OpNode('ones_like', [a])
            if x == 0.5:
                kind = a.astKind
                if kind in ('int', 'long'): kind = 'double'
                return FuncNode('sqrt', [a], kind=kind)
            if x == 1:
                return a
            if x == 2:
                return OpNode('mul', [a,a])
    return OpNode('pow', [a,b])

# The functions and the minimum and maximum types accepted
functions = {
    'copy' : func(numpy.copy),
    'ones_like' : func(numpy.ones_like),
    'sqrt' : func(numpy.sqrt, 'float'),

    'sin' : func(numpy.sin, 'float'),
    'cos' : func(numpy.cos, 'float'),
    'tan' : func(numpy.tan, 'float'),
    'arcsin' : func(numpy.arcsin, 'float'),
    'arccos' : func(numpy.arccos, 'float'),
    'arctan' : func(numpy.arctan, 'float'),

    'sinh' : func(numpy.sinh, 'float'),
    'cosh' : func(numpy.cosh, 'float'),
    'tanh' : func(numpy.tanh, 'float'),
    'arcsinh' : func(numpy.arcsinh, 'float'),
    'arccosh' : func(numpy.arccosh, 'float'),
    'arctanh' : func(numpy.arctanh, 'float'),

    'fmod' : func(numpy.fmod, 'float'),
    'arctan2' : func(numpy.arctan2, 'float'),

    'log' : func(numpy.log, 'float'),
    'log1p' : func(numpy.log1p, 'float'),
    'log10' : func(numpy.log10, 'float'),
    'exp' : func(numpy.exp, 'float'),
    'expm1' : func(numpy.expm1, 'float'),

    'abs': func(numpy.absolute, 'float'),

    'where' : where_func,

    'real' : func(numpy.real, 'double', 'double'),
    'imag' : func(numpy.imag, 'double', 'double'),
    'complex' : func(complex, 'complex'),
    'conj' : func(numpy.conj, 'complex'),

    'sum' : sum_func,
    'prod' : prod_func,
    'contains' : contains_func,
    }


class ExpressionNode(object):
    """An object that represents a generic number object.

    This implements the number special methods so that we can keep
    track of how this object has been used.
    """
    astType = 'generic'

    def __init__(self, value=None, kind=None, children=None):
        object.__init__(self)
        self.value = value
        if kind is None:
            kind = 'none'
        self.astKind = kind
        if children is None:
            self.children = ()
        else:
            self.children = tuple(children)

    def get_real(self):
        if self.astType == 'constant':
            return ConstantNode(complex(self.value).real)
        return OpNode('real', (self,), 'double')
    real = property(get_real)

    def get_imag(self):
        if self.astType == 'constant':
            return ConstantNode(complex(self.value).imag)
        return OpNode('imag', (self,), 'double')
    imag = property(get_imag)

    def __str__(self):
        return '%s(%s, %s, %s)' % (self.__class__.__name__, self.value,
                                   self.astKind, self.children)
    def __repr__(self):
        return self.__str__()

    def __neg__(self):
        return OpNode('neg', (self,))
    def __invert__(self):
        return OpNode('invert', (self,))
    def __pos__(self):
        return self

    # The next check is commented out. See #24 for more info.

    def __nonzero__(self):
         raise TypeError("You can't use Python's standard boolean operators in "
                         "NumExpr expressions. You should use their bitwise "
                         "counterparts instead: '&' instead of 'and', "
                         "'|' instead of 'or', and '~' instead of 'not'.")

    __add__ = __radd__ = binop('add')
    __sub__ = binop('sub')
    __rsub__ = binop('sub', reversed=True)
    __mul__ = __rmul__ = binop('mul')
    if sys.version_info[0] < 3:
        __div__ = div_op
        __rdiv__ = binop('div', reversed=True)
    __truediv__ = truediv_op
    __rtruediv__ = rtruediv_op
    __pow__ = pow_op
    __rpow__ = binop('pow', reversed=True)
    __mod__ = binop('mod')
    __rmod__ = binop('mod', reversed=True)

    __lshift__ = binop('lshift')
    __rlshift__ = binop('lshift', reversed=True)
    __rshift__ = binop('rshift')
    __rrshift__ = binop('rshift', reversed=True)

    # boolean operations

    __and__ = binop('and', kind='bool')
    __or__ = binop('or', kind='bool')

    __gt__ = binop('gt', kind='bool')
    __ge__ = binop('ge', kind='bool')
    __eq__ = binop('eq', kind='bool')
    __ne__ = binop('ne', kind='bool')
    __lt__ = binop('gt', reversed=True, kind='bool')
    __le__ = binop('ge', reversed=True, kind='bool')



class LeafNode(ExpressionNode):
    leafNode = True

class VariableNode(LeafNode):
    astType = 'variable'
    def __init__(self, value=None, kind=None, children=None):
        LeafNode.__init__(self, value=value, kind=kind)

class RawNode(object):
    """Used to pass raw integers to interpreter.
    For instance, for selecting what function to use in func1.
    Purposely don't inherit from ExpressionNode, since we don't wan't
    this to be used for anything but being walked.
    """
    astType = 'raw'
    astKind = 'none'
    def __init__(self, value):
        self.value = value
        self.children = ()
    def __str__(self):
        return 'RawNode(%s)' % (self.value,)
    __repr__ = __str__


class ConstantNode(LeafNode):
    astType = 'constant'
    def __init__(self, value=None, children=None):
        kind = getKind(value)
        # Python float constants are double precision by default
        if kind == 'float':
            kind = 'double'
        LeafNode.__init__(self, value=value, kind=kind)
    def __neg__(self):
        return ConstantNode(-self.value)
    def __invert__(self):
        return ConstantNode(~self.value)

class OpNode(ExpressionNode):
    astType = 'op'
    def __init__(self, opcode=None, args=None, kind=None):
        if (kind is None) and (args is not None):
            kind = commonKind(args)
        ExpressionNode.__init__(self, value=opcode, kind=kind, children=args)

class FuncNode(OpNode):
    def __init__(self, opcode=None, args=None, kind=None):
        if (kind is None) and (args is not None):
            kind = commonKind(args)
        OpNode.__init__(self, opcode, args, kind)