This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/quadrature/reduce_operations.py is in python-ffc 1.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
"Some simple functions for manipulating expressions symbolically"

# Copyright (C) 2008-2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2008-04-24
# Last changed: 2010-01-21

# FFC modules
from ffc.log import error

from collections import deque

def split_expression(expression, format, operator, allow_split = False):
    """Split the expression at the given operator, return list.
    Do not split () or [] unless told to split (). This is to enable easy count
    of double operations which can be in (), but in [] we only have integer operations."""

    # Get formats
    access = format["component"]("", [""])
    group = format["grouping"]("")
    la = access[0]
    ra = access[1]
    lg = group[0]
    rg = group[1]

    # Split with given operator
    prods = deque(expression.split(operator))
    new_prods = [prods.popleft()]

    while prods:
        # Continue while we still have list of potential products
        # p is the first string in the product
        p = prods.popleft()
        # If the number of "[" and "]" doesn't add up in the last entry of the
        # new_prods list, add p and see if it helps for next iteration
        if new_prods[-1].count(la) != new_prods[-1].count(ra):
            new_prods[-1] = operator.join([new_prods[-1], p])
        # If the number of "(" and ")" doesn't add up (and we didn't allow a split)
        # in the last entry of the new_prods list, add p and see if it helps for next iteration
        elif new_prods[-1].count(lg) != new_prods[-1].count(rg) and not allow_split:
            new_prods[-1] = operator.join([new_prods[-1], p])
        # If everything was fine, we can start a new entry in the new_prods list
        else: new_prods.append(p)

    return new_prods

def operation_count(expression, format):
    """This function returns the number of double operations in an expression.
    We do split () but not [] as we only have unsigned integer operations in []."""

    # Note we do not subtract 1 for the additions, because there is also an
    # assignment involved
    adds = len(split_expression(expression, format, format["add"](["", ""]), True)) - 1
    mults = len(split_expression(expression, format, format["multiply"](["", ""]), True)) - 1
    return mults + adds

def get_simple_variables(expression, format):
    """This function takes as argument an expression (preferably expanded):
      expression = "x*x + y*x + x*y*z"
    returns a list of products and a dictionary:
      prods = ["x*x", "y*x", "x*y*z"]
      variables = {variable: [num_occurences, [pos_in_prods]]}
      variables = {"x":[3, [0,1,2]], "y":[2, [1,2]], "z":[1, [2]]}"""

    # Get formats
    add           = format["add"](["", ""])
    mult          = format["multiply"](["", ""])
    group         = format["grouping"]("")
    format_float  = format["floating point"]

    prods = split_expression(expression, format, add)
    prods = [p for p in prods if p]

    variables = {}
    for i, p in enumerate(prods):
        # Only extract unique variables
        vrs = list(set( split_expression(p, format, mult) ))
        for v in vrs:
            # Try to convert variable to floats and back (so '2' == '2.0' etc.)
            try:
                v = format_float(float(v))
            except:
                pass
            if v in variables:
                variables[v][0] += 1
                variables[v][1].append(i)
            else:
                variables[v] = [1, [i]]
    return (prods, variables)

def group_vars(expr, format):
    """Group variables in an expression, such that:
    "x + y + z + 2*y + 6*z" = "x + 3*y + 7*z"
    "x*x + x*x + 2*x + 3*x + 5" = "2.0*x*x + 5.0*x + 5"
    "x*y + y*x + 2*x*y + 3*x + 0*x + 5" = "5.0*x*y + 3.0*x + 5"
    "(y + z)*x + 5*(y + z)*x" = "6.0*(y + z)*x"
    "1/(x*x) + 2*1/(x*x) + std::sqrt(x) + 6*std::sqrt(x)" = "3*1/(x*x) + 7*std::sqrt(x)"
    """

    # Get formats
    format_float = format["floating point"]
    add   = format["add"](["", ""])
    mult  = format["multiply"](["", ""])

    new_prods = {}

    # Get list of products
    prods = split_expression(expr, format, add)

    # Loop products and collect factors
    for p in prods:
        # Get list of variables, and do a basic sort
        vrs = split_expression(p, format, mult)
        factor = 1
        new_var = []

        # Try to multiply factor with variable, else variable must be multiplied by factor later
        # If we don't have a variable, set factor to zero and break
        for v in vrs:
            if v:
                try:
                    f = float(v)
                    factor *= f
                except:
                    new_var.append(v)
            else:
                factor = 0
                break

        # Create new variable that must be multiplied with factor. Add this
        # variable to dictionary, if it already exists add factor to other factors
        new_var.sort()
        new_var = mult.join(new_var)
        if new_var in new_prods:
            new_prods[new_var] += factor
        else:
            new_prods[new_var] = factor

    # Reset products
    prods = []
    for prod, f in new_prods.items():
        # If we have a product append mult of both
        if prod:
            # If factor is 1.0 we don't need it
            if f == 1.0:
                prods.append(prod)
            else:
                prods.append(mult.join([format_float(f), prod]))
        # If we just have a factor
        elif f:
            prods.append(format_float(f))

    prods.sort()
    return add.join(prods)


def reduction_possible(variables):
    """Find the variable that occurs in the most products, if more variables
    occur the same number of times and in the same products add them to list."""

    # Find the variable that appears in the most products
    max_val = 1
    max_var = ""
    max_vars = []
    for key, val in variables.items():
        if max_val < val[0]:
            max_val = val[0]
            max_var = key

    # If we found a variable that appears in products multiple times, check if
    # other variables appear in the exact same products
    if max_var:
        for key, val in variables.items():
            # Check if we have more variables in the same products
            if max_val == val[0] and variables[max_var][1] == val[1]:
                max_vars.append(key)
    return max_vars

def is_constant(variable, format, constants = [], from_is_constant = False):
    """Determine if a variable is constant or not.
    The function accepts an optional list of variables (loop indices) that will
    be regarded as constants for the given variable. If none are supplied it is
    assumed that all array accesses will result in a non-constant variable.

    v = 2.0,          is constant
    v = Jinv_00*det,  is constant
    v = w[0][1],      is constant
    v = 2*w[0][1],    is constant
    v = W0[ip],       is constant if constants = ['ip'] else not
    v = P_t0[ip][j],  is constant if constants = ['j','ip'] else not"""

    # Get formats
    access    = format["array access"]("")
    add       = format["add"](["", ""])
    mult      = format["multiply"](["", ""])

    l = access[0]
    r = access[1]

    if not variable.count(l) == variable.count(r):
        print "variable: ", variable
        error("Something wrong with variable")

    # Be sure that we don't have a compound
    variable = expand_operations(variable, format)

    prods = split_expression(variable, format, add)
    new_prods = []

    # Loop all products and variables and check if they're constant
    for p in prods:
        vrs = split_expression(p, format, mult)
        for v in vrs:
            # Check if each variable is constant, if just one fails the entire
            # variable is considered not to be constant
            const_var = False

            # If variable is in constants, well....
            if v in constants:
                const_var = True
                continue

            # If we don't have any '[' or ']' we have a constant
            # (unless we're dealing with a call from this funtions)
            elif not v.count(l) and not from_is_constant:
                const_var = True
                continue

            # If we have an array access variable, see if the index is regarded a constant
            elif v.count(l):

                # Check if access is OK ('[' is before ']')
                if not v.index(l) < v.index(r):
                    print "variable: ", v
                    error("Something is wrong with the array access")

                # Auxiliary variables
                index = ""; left = 0; inside = False; indices = []

                # Loop all characters in variable and find indices
                for c in v:

                    # If character is ']' reduce left count
                    if c == r: left -= 1

                    # If the '[' count has returned to zero, we have a complete index
                    if left == 0 and inside:
                        const_index = False # Aux. var
                        if index in constants:
                            const_index = True

                        try:
                            int(index)
                            const_index = True
                        except:
                            # Last resort, call recursively
                            if is_constant(index, format, constants, True):
                                const_index = True
                            pass

                        # Append index and reset values
                        if const_index:
                            indices.append(const_index)
                        else:
                            indices = [False]
                            break
                        index = ""
                        inside = False

                    # If we're inside an access, add character to index
                    if inside:
                        index += c

                    # If character is '[' increase the count, and we're inside an access
                    if c == l:
                        inside = True
                        left += 1

                # If all indices were constant, the variable is constant
                if all(indices):
                    const_var = True
                    continue

            else:
                # If it is a float, it is also constant
                try:
                    float(v)
                    const_var = True
                    continue
                except:
                    pass

            # I no tests resulted in a constant variable, there is no need to continue
            if not const_var:
                return False

    # If all variables were constant return True
    return True

def expand_operations(expression, format):
    """This function expands an expression and returns the value. E.g.,
    ((x + y))             --> x + y
    2*(x + y)             --> 2*x + 2*y
    (x + y)*(x + y)       --> x*x + y*y + 2*x*y
    z*(x*(y + 3) + 2) + 1 --> 1 + 2*z + x*y*z + x*z*3
    z*((y + 3)*x + 2) + 1 --> 1 + 2*z + x*y*z + x*z*3"""

    # Get formats
    add   = format["add"](["", ""])
    mult  = format["multiply"](["", ""])
    group = format["grouping"]("")
    l = group[0]
    r = group[1]

    # Check that we have the same number of left/right parenthesis in expression
    if not expression.count(l) == expression.count(r):
        error("Number of left/right parenthesis do not match")

    # If we don't have any parenthesis, group variables and return
    if expression.count(l) == 0:
        return group_vars(expression, format)

    # Get list of additions
    adds = split_expression(expression, format, add)
    new_adds = []

    # Loop additions and get products
    for a in adds:
        prods = split_expression(a, format, mult)
        prods.sort()
        new_prods = []
        
        # FIXME: Should we use deque here?
        expanded = []
        for i, p in enumerate(prods):
            # If we have a group, expand inner expression
            if p[0] == l and p[-1] == r:
                # Add remaining products to new products and multiply with all
                # terms from expanded variable
                expanded_var = expand_operations(p[1:-1], format)
                expanded.append( split_expression(expanded_var, format, add) )

            # Else, just add variable to list of new products
            else:
                new_prods.append(p)

        if expanded:
            # Combine all expanded variables and multiply by factor
            while len(expanded) > 1:
                first = expanded.pop(0)
                second = expanded.pop(0)
                expanded = [[mult.join([i] + [j]) for i in first for j in second]] + expanded
            new_adds += [mult.join(new_prods + [e]) for e in expanded[0]]
        else:
            # Else, just multiply products and add to list of products
            new_adds.append( mult.join(new_prods) )

    # Group variables and return
    return group_vars(add.join(new_adds), format)

def reduce_operations(expression, format):
    """This function reduces the number of opertions needed to compute a given
    expression. It looks for the variable that appears the most and groups terms
    containing this variable inside parenthesis. The function is called recursively
    until no further reductions are possible.

    "x + y + x" = 2*x + y
    "x*x + 2.0*x*y + y*y" = y*y + (2.0*y + x)*x, not (x + y)*(x + y) as it should be!!
    z*x*y + z*x*3 + 2*z + 1" = z*(x*(y + 3) + 2) + 1"""

    # Get formats
    add   = format["add"](["", ""])
    mult  = format["multiply"](["", ""])
    group = format["grouping"]("")

    # Be sure that we have an expanded expression
    expression = expand_operations(expression, format)

    # Group variables to possibly reduce complexity
    expression = group_vars(expression, format)

    # Get variables and products
    prods, variables = get_simple_variables(expression, format)

    # Get the variables for which we can reduce the expression
    max_vars = reduction_possible(variables)
    new_prods = []
    no_mult = []
    max_vars.sort()

    # If we have variables that can be moved outside 
    if max_vars:
        for p in prods:
            # Get the list of variables in current product
            li = split_expression(p, format, mult)
            li.sort()

            # If the list of products is the same as what we intend of moving
            # outside the parenthesis, leave it
            # (because x + x*x + x*y should be x + (x + y)*x NOT (1.0 + x + y)*x)
            if li == max_vars:
                no_mult.append(p)
                continue
            else:
                # Get list of all variables from max_vars that are in li
                indices = [i for i in max_vars if i in li]
                # If not all were present add to list of terms that shouldn't be
                # multiplied with variables and continue
                if indices != max_vars:
                    no_mult.append(p)
                    continue

            # Remove variables that we are moving outside
            for v in max_vars:
                li.remove(v)

            # Add to list of products
            p = mult.join(li)
            new_prods.append(p)

        # Sort lists
        no_mult.sort()
        new_prods.sort()
    else:
        # No reduction possible
        return expression

    # Recursively reduce sums with and without reduced variable
    new_prods = add.join(new_prods)
    if new_prods:
        new_prods = reduce_operations(new_prods, format)
    if no_mult:
        no_mult = [reduce_operations(add.join(no_mult), format)]

    # Group new products if we have a sum
    g = new_prods
    len_new_prods = len(split_expression(new_prods, format, add))
    if len_new_prods > 1:
        g = format["grouping"](new_prods)

    # The new expression is the sum of terms that couldn't be reduced and terms
    # that could be reduced multiplied by the reduction e.g.,
    # expr = z + (x + y)*x
    new_expression = add.join(no_mult + [mult.join([g, mult.join(max_vars)])])

    return new_expression

def get_geo_terms(expression, geo_terms, offset, format):
    """This function returns a new expression where all geometry terms have
    been substituted with geometry declarations, these declarations are added
    to the geo_terms dictionary. """

    # Get formats
    add       = format["add"](["", ""])
    mult      = format["multiply"](["", ""])
    access    = format["array access"]("")
    grouping  = format["grouping"]
    group     = grouping("")
    format_G  = format["geometry tensor"]
    gl = group[0]
    gr = group[1]
    l = access[0]
    r = access[1]

    # Get the number of geometry declaration, possibly offset value
    num_geo = offset + len(geo_terms)
    new_prods = []

    # Split the expression into products
    prods = split_expression(expression, format, add)
    consts = []

    # Loop products and check if the variables are constant
    for p in prods:
        vrs = split_expression(p, format, mult)
        geos = []

        # Generate geo code for constant coefficients e.g., w[0][5]
        new_vrs = []
        for v in vrs:

            # If variable is a group, get the geometry terms and update geo number
            if v[0] == gl and v[-1] == gr:
                v = get_geo_terms(v[1:-1], geo_terms, offset, format)
                num_geo = offset + len(geo_terms)

                # If we still have a sum, regroup
                if len(v.split(add)) > 1:
                    v = grouping(v)

            # Append to new variables
            new_vrs.append(v)

            # If variable is constants, add to geo terms
            constant = is_constant(v, format)
            if constant:
                geos.append(v)

        # Update variable list
        vrs = new_vrs; vrs.sort()

        # Sort geo and create geometry term
        geos.sort()
        geo = mult.join(geos)

        # Handle geometry term appropriately
        if geo:
            if geos != vrs:
                if len(geos) > 1:
                    for g in geos:
                        vrs.remove(g)
                    if not geo in geo_terms:
                        geo_terms[geo] = format_G + str(num_geo)
                        num_geo += 1
                    vrs.append(geo_terms[geo])
                new_prods.append(mult.join(vrs))
            else:
                consts.append(mult.join(vrs))
        else:
            new_prods.append(mult.join(vrs))

    if consts:
        if len(consts) > 1:
            c = grouping(add.join(consts))
        else:
            c = add.join(consts)
        if not c in geo_terms:
            geo_terms[c] = format_G + str(num_geo)
            num_geo += 1
        consts = [geo_terms[c]]

    return add.join(new_prods + consts)

def get_constants(expression, const_terms, format, constants = []):
    """This function returns a new expression where all geometry terms have
    been substituted with geometry declarations, these declarations are added
    to the const_terms dictionary. """

    # Get formats
    add       = format["add"](["", ""])
    mult      = format["multiply"](["", ""])
    access    = format["array access"]("")
    grouping  = format["grouping"]
    group     = grouping("")
    format_G  = format["geometry tensor"] + "".join(constants) #format["geometry tensor"]
    gl = group[0]
    gr = group[1]
    l = access[0]
    r = access[1]

    # Get the number of geometry declaration, possibly offset value
    num_geo = len(const_terms)
    new_prods = []

    # Split the expression into products
    prods = split_expression(expression, format, add)
    consts = []

    # Loop products and check if the variables are constant
    for p in prods:
        vrs = split_expression(p, format, mult)
        geos = []

        # Generate geo code for constant coefficients e.g., w[0][5]
        new_vrs = []
        for v in vrs:

            # If variable is constants, add to geo terms
            constant = is_constant(v, format, constants)
            if constant:
                geos.append(v)
            # Append to new variables
            new_vrs.append(v)

        # Update variable list
        vrs = new_vrs; vrs.sort()

        # Sort geo and create geometry term
        geos.sort()
        geo = mult.join(geos)
        if geo:
            if geos != vrs:
                for g in geos:
                    vrs.remove(g)
                if not geo in const_terms:
                    const_terms[geo] = format_G + str(num_geo)
                    num_geo += 1
                vrs.append(const_terms[geo])
                new_prods.append(mult.join(vrs))
            else:
                consts.append(mult.join(vrs))
        else:
            new_prods.append(mult.join(vrs))

    if consts:
        if len(consts) > 1:
            c = grouping(add.join(consts))
        else:
            c = add.join(consts)
        if not c in const_terms:
            const_terms[c] = format_G + str(num_geo)
            num_geo += 1
        consts = [const_terms[c]]

    return add.join(new_prods + consts)

def get_indices(variable, format, from_get_indices = False):
    """This function returns the indices of a given variable. E.g.,
    P[0][j],            returns ['j']
    P[ip][k],           returns ['ip','k']
    P[ip][nzc0[j] + 3], returns ['ip','j']
    w[0][j + 2]         , returns [j]"""

    add           = format["add"](["", ""])
    mult          = format["multiply"](["", ""])
    format_access = format["array access"]
    access        = format_access("")

    l = access[0]
    r = access[1]

    indices = []

    # If there are no '[' in variable and self is the caller
    if not variable.count(l) and from_get_indices:
        adds = split_expression(variable, format, add)
        for a in adds:
            mults = split_expression(a, format, mult)
            for m in mults:
                try:
                    float(m)
                except:
                    if not m in indices:
                        indices.append(m)
    else:
        index = ""; left = 0; inside = False;
        # Loop all characters in variable and find indices
        for c in variable:
            # If character is ']' reduce left count
            if c == r:
                left -= 1

            # If the '[' count has returned to zero, we have a complete index
            if left == 0 and inside:
                try:
                    eval(index)
                except:
                    indices += get_indices(index, format, True)
                index = ""
                inside = False

            # If we're inside an access, add character to index
            if inside:
                index += c

            # If character is '[' increase the count, and we're inside an access
            if c == l:
                inside = True
                left += 1

    return indices

def get_variables(expression, variables, format, constants = []):
    """This function returns a new expression where all geometry terms have
    been substituted with geometry declarations, these declarations are added
    to the const_terms dictionary. """

    # Get formats
    add           = format["add"](["", ""])
    mult          = format["multiply"](["", ""])
    format_access = format["array access"]
    access        = format_access("")
    grouping      = format["grouping"]
    group         = grouping("")
    format_F      = format["function value"]
    format_ip     = format["integration points"]

    gl = group[0]
    gr = group[1]
    l = access[0]
    r = access[1]

    # If we don't have any access operators in expression,
    # we don't have any variables
    if expression.count(l) == 0:
        return expression

    # Get the number of geometry declaration, possibly offset value
    num_var = len(variables)
    new_prods = []
    used_vars = []

    # Split the expression into products
    prods = split_expression(expression, format, add)
    consts = []

    # Loop products and check if the variables are constant
    for p in prods:
        vrs = split_expression(p, format, mult)
        # Variables with respect to the constants in list
        variables_of_interest = []

        # Generate geo code for constant coefficients e.g., w[0][5]
        new_vrs = []
        for v in vrs:
            # If we don't have any access operators, we don't have a variable
            if v.count(l) == 0:
                new_vrs.append(v)
                continue

            # Check if we have a variable that depends on one of the constants
            # First check the easy way
            is_var = False
            for c in constants:
                if format_access(c) in v:
                    is_var = True
                    break
            if is_var:
                variables_of_interest.append(v)
                continue

            # Then check the hard way
            # Get list of indices
            indices = get_indices(v, format)
            depends = [True for c in constants if c in indices]
            if any(depends):
                variables_of_interest.append(v)
            else:
                new_vrs.append(v)

        variables_of_interest.sort()
        variables_of_interest = mult.join(variables_of_interest)

        # If we have some variables, declare new variable if needed and add
        # to list of variables
        if variables_of_interest:
            # If we didn't already declare this variable do so
            if not variables_of_interest in variables:
                variables[variables_of_interest] = format_F + str(num_var)
                num_var += 1

            # Get mapped variable
            mv = variables[variables_of_interest]
            new_vrs.append(mv)
            if not mv in used_vars:
                used_vars.append(mv)

        # Sort variables and add to list of products
        new_vrs.sort()
        new_prods.append(mult.join(new_vrs))

    # Sort list of products and return the sum
    new_prods.sort()
    return (add.join(new_prods), used_vars)