This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/errorcontrol/errorcontrolgenerators.py is in python-ffc 1.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
This module provides an abstract ErrorControlGenerator class for
generating forms required for goal-oriented error control and a
realization of this: UFLErrorControlGenerator for handling pure UFL
forms.
"""

# Copyright (C) 2010 Marie E. Rognes
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Last changed: 2011-06-29

from ufl import inner, dx, ds, dS, avg, replace, action
from ufl.algorithms.analysis import extract_arguments

__all__ = ["ErrorControlGenerator", "UFLErrorControlGenerator"]

class ErrorControlGenerator:

    def __init__(self, module, F, M, u):
        """
        *Arguments*

            module (Python module)
               The module to use for specific form manipulations
               (typically ufl or dolfin)

            F (tuple or Form)
               tuple of (bilinear, linear) forms or linear form

            M (Form)
               functional or linear form

            u (Coefficient)
              The coefficient considered as the unknown.
        """
        # Store module
        self.module = module

        # Store solution Coefficient/Function
        self.u = u

        # Extract the lhs (bilinear form), rhs (linear form), goal
        # (functional), weak residual (linear form)
        linear_case = (isinstance(F, (tuple, list)) and len(F) == 2)
        if linear_case:
            self.lhs, self.rhs = F
            try:
                self.goal = action(M, u)
            except:
                self.goal = M    # Allow functionals as input as well
            self.weak_residual = self.rhs - action(self.lhs, u)
        else:
            self.lhs = self.module.derivative(F, u)
            self.rhs = F
            self.goal = M
            self.weak_residual = - F

        # At least check that final forms have correct rank
        assert(len(extract_arguments(self.lhs)) == 2)
        assert(len(extract_arguments(self.rhs)) == 1)
        assert(len(extract_arguments(self.goal)) == 0)
        assert(len(extract_arguments(self.weak_residual)) == 1)

        # Get the domain, assuming there's only one
        assert(len(self.weak_residual.domains()) == 1)
        self.domain, = self.weak_residual.domains()

        # Store map from identifiers to names for forms and generated
        # coefficients
        self.ec_names = {}

        # Use predefined names for the forms in the primal problem
        self.ec_names[id(self.lhs)] = "lhs"
        self.ec_names[id(self.rhs)] = "rhs"
        self.ec_names[id(self.goal)] = "goal"

        # Initialize other required data
        self.initialize_data()

    def initialize_data(self):
        """
        Initialize specific data
        """
        msg = """ErrorControlGenerator acts as an abstract
        class. Subclasses must overload the initialize_data() method
        and provide a certain set of variables. See
        UFLErrorControlGenerator for an example."""
        raise NotImplementedError, msg

    def generate_all_error_control_forms(self):
        """
        Utility function for generating all (8) forms required for
        error control in addition to the primal forms
        """
        # Generate dual forms
        (a_star, L_star) = self.dual_forms()

        # Generate forms for computing strong cell residual
        (a_R_T, L_R_T) = self.cell_residual()

        # Generate forms for computing strong facet residuals
        (a_R_dT, L_R_dT) = self.facet_residual()

        # Generate form for computing error estimate
        eta_h = self.error_estimate()

        # Generate form for computing error indicators
        eta_T = self.error_indicators()

        # Paranoid checks added after introduction of multidomain features in ufl:
        for i, form in enumerate((a_star, L_star, eta_h, a_R_T, L_R_T, a_R_dT, L_R_dT, eta_T)):
            assert len(form.domains()) > 0, ("Zero domains at form %d" % i)
            assert len(form.domains()) == 1, ("%d domains at form %d" % (len(form.domains()), i))

        # Return all generated forms in CERTAIN order matching
        # constructor of dolfin/adaptivity/ErrorControl.h
        return (a_star, L_star, eta_h, a_R_T, L_R_T, a_R_dT, L_R_dT, eta_T)

    def primal_forms(self):
        """
        Return primal forms in order (bilinear, linear, functional)
        """
        return self.lhs, self.rhs, self.goal

    def dual_forms(self):
        """
        Generate and return (bilinear, linear) forms defining linear
        dual variational problem
        """
        a_star = self.module.adjoint(self.lhs)
        L_star = self.module.derivative(self.goal, self.u)
        return (a_star, L_star)

    def cell_residual(self):
        """
        Generate and return (bilinear, linear) forms defining linear
        variational problem for the strong cell residual
        """
        # Define trial and test functions for the cell residuals on
        # discontinuous version of primal trial space
        R_T = self.module.TrialFunction(self._dV)
        v = self.module.TestFunction(self._dV)

        # Extract original test function in the weak residual
        v_h = extract_arguments(self.weak_residual)[0]

        # Define forms defining linear variational problem for cell
        # residual
        v_T = self._b_T*v
        a_R_T = inner(v_T, R_T)*dx(self.domain)
        L_R_T = replace(self.weak_residual, {v_h: v_T})

        return (a_R_T, L_R_T)

    def facet_residual(self):
        """
        Generate and return (bilinear, linear) forms defining linear
        variational problem for the strong facet residual(s)
        """
        # Define trial and test functions for the facet residuals on
        # discontinuous version of primal trial space
        R_e = self.module.TrialFunction(self._dV)
        v = self.module.TestFunction(self._dV)

        # Extract original test function in the weak residual
        v_h = extract_arguments(self.weak_residual)[0]

        # Define forms defining linear variational problem for facet
        # residual
        v_e = self._b_e*v
        a_R_dT = ((inner(v_e('+'), R_e('+')) + inner(v_e('-'), R_e('-')))*dS(self.domain)
                  + inner(v_e, R_e)*ds(self.domain))
        L_R_dT = (replace(self.weak_residual, {v_h: v_e})
                  - inner(v_e, self._R_T)*dx(self.domain))

        return (a_R_dT, L_R_dT)

    def error_estimate(self):
        """
        Generate and return functional defining error estimate
        """
        # Error estimate defined as r(Ez_h):
        eta_h = action(self.weak_residual, self._Ez_h)
        return eta_h

    def error_indicators(self):
        """
        Generate and return linear form defining error indicators
        """
        # Extract these to increase readability
        R_T = self._R_T
        R_dT = self._R_dT
        z = self._Ez_h
        z_h = self._z_h

        # Define linear form for computing error indicators
        v = self.module.TestFunction(self._DG0)
        eta_T = (v*inner(R_T, z - z_h)*dx(self.domain)
                 + avg(v)*(inner(R_dT('+'), (z - z_h)('+'))
                           + inner(R_dT('-'), (z - z_h)('-')))*dS(self.domain)
                 + v*inner(R_dT, z - z_h)*ds(self.domain))

        return eta_T

class UFLErrorControlGenerator(ErrorControlGenerator):
    """
    This class provides a realization of ErrorControlGenerator for use
    with pure UFL forms
    """

    def __init__(self, F, M, u):
        """
        *Arguments*

            F (tuple or Form)
               tuple of (bilinear, linear) forms or linear form

            M (Form)
               functional or linear form

            u (Coefficient)
              The coefficient considered as the unknown.
        """

        ErrorControlGenerator.__init__(self, __import__("ufl"), F, M, u)

    def initialize_data(self):
        """
        Extract required objects for defining error control
        forms. This will be stored, reused and in particular named.
        """
        # Developer's note: The UFL-FFC-DOLFIN--PyDOLFIN toolchain for
        # error control is quite fine-tuned. In particular, the order
        # of coefficients in forms is (and almost must be) used for
        # their assignment. This means that the order in which these
        # coefficients are defined matters and should be considered
        # fixed.

        from ufl import FiniteElement, Coefficient
        from ufl.algorithms.elementtransformations import tear, increase_order

        # Primal trial element space
        self._V = self.u.element()

        # Primal test space == Dual trial space
        Vhat = extract_arguments(self.weak_residual)[0].element()

        # Discontinuous version of primal trial element space
        self._dV = tear(self._V)

        # Extract domain and geometric dimension
        domain, = self._V.domains()
        gdim = domain.geometric_dimension()

        # Coefficient representing improved dual
        E = increase_order(Vhat)
        self._Ez_h = Coefficient(E)
        self.ec_names[id(self._Ez_h)] = "__improved_dual"

        # Coefficient representing cell bubble function
        B = FiniteElement("B", domain, gdim + 1)
        self._b_T = Coefficient(B)
        self.ec_names[id(self._b_T)] = "__cell_bubble"

        # Coefficient representing strong cell residual
        self._R_T = Coefficient(self._dV)
        self.ec_names[id(self._R_T)] = "__cell_residual"

        # Coefficient representing cell cone function
        C = FiniteElement("DG", domain, gdim)
        self._b_e = Coefficient(C)
        self.ec_names[id(self._b_e)] = "__cell_cone"

        # Coefficient representing strong facet residual
        self._R_dT = Coefficient(self._dV)
        self.ec_names[id(self._R_dT)] = "__facet_residual"

        # Define discrete dual on primal test space
        self._z_h = Coefficient(Vhat)
        self.ec_names[id(self._z_h)] = "__discrete_dual_solution"

        # Piecewise constants for assembling indicators
        self._DG0 = FiniteElement("DG", domain, 0)