This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/utils.py is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Fast Azimuthal integration
#             https://github.com/kif/pyFAI
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

"""

Utilities, mainly for image treatment

"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/10/2014"
__status__ = "production"

import logging, sys, types, os, glob
import threading
sem = threading.Semaphore()  # global lock for image processing initialization
import numpy
import fabio
from scipy import ndimage
from scipy.interpolate import interp1d
from math import ceil, sin, cos, atan2, pi

try:
    from . import relabel as relabelCython
except:
    relabelCython = None
try:
    from .directories import data_dir
except ImportError:
    data_dir = None

from scipy.optimize.optimize import fmin, fminbound
import scipy.ndimage.filters
logger = logging.getLogger("pyFAI.utils")
import time
timelog = logging.getLogger("pyFAI.timeit")

cu_fft = None  # No cuda here !
if sys.platform != "win32":
    WindowsError = RuntimeError
has_fftw3 = None
try:
    import fftw3
    has_fftw3 = True
except (ImportError, WindowsError) as err:
    logger.warn("Exception %s: FFTw3 not available. Falling back on Scipy", err)
    has_fftw3 = False

import traceback

def deprecated(func):
    def wrapper(*arg, **kw):
        """
        decorator that deprecates the use of a function
        """
        logger.warning("%s is Deprecated !!! %s" % (func.func_name, os.linesep.join([""] + traceback.format_stack()[:-1])))
        return func(*arg, **kw)
    return wrapper

def gaussian(M, std):
    """
    Return a Gaussian window of length M with standard-deviation std.

    This differs from the scipy.signal.gaussian implementation as:
    - The default for sym=False (needed for gaussian filtering without shift)
    - This implementation is normalized

    @param M: length of the windows (int)
    @param std: standatd deviation sigma

    The FWHM is 2*numpy.sqrt(2 * numpy.pi)*std

    """
    x = numpy.arange(M) - M / 2.0
    return numpy.exp(-(x / std) ** 2 / 2.0) / std / numpy.sqrt(2 * numpy.pi)


def float_(val):
    """
    Convert anything to a float ... or None if not applicable
    """
    try:
        f = float(str(val).strip())
    except ValueError:
        f = None
    return f

def int_(val):
    """
    Convert anything to an int ... or None if not applicable
    """
    try:
        f = int(str(val).strip())
    except ValueError:
        f = None
    return f

def str_(val):
    """
    Convert anything to a string ... but None -> ""
    """
    s = ""
    if val != None:
        s = str(val)
    return s


def timeit(func):
    def wrapper(*arg, **kw):
        '''This is the docstring of timeit:
        a decorator that logs the execution time'''
        t1 = time.time()
        res = func(*arg, **kw)
        t2 = time.time()
        if "func_name" in dir(func):
            name = func.func_name
        else:
            name = str(func)
        timelog.warning("%s took %.3fs" % (name, t2 - t1))
        return res
    wrapper.__name__ = func.__name__
    wrapper.__doc__ = func.__doc__
    return wrapper

def gaussian_filter(input_img, sigma, mode="reflect", cval=0.0):
    """
    2-dimensional Gaussian filter implemented with FFTw

    @param input_img:    input array to filter
    @type input_img: array-like
    @param sigma: standard deviation for Gaussian kernel.
        The standard deviations of the Gaussian filter are given for each axis as a sequence,
        or as a single number, in which case it is equal for all axes.
    @type sigma: scalar or sequence of scalars
    @param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The ``mode`` parameter determines how the array borders are
        handled, where ``cval`` is the value when mode is equal to
        'constant'. Default is 'reflect'
    @param cval: scalar, optional
        Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
    """
    res = None
    # TODO: understand why this is needed !
    if "has_fftw3" not in dir():
        has_fftw3 = ("fftw3" in sys.modules)
    if has_fftw3:
        try:
            if isinstance(sigma, (list, tuple)):
                sigma = (float(sigma[0]), float(sigma[1]))
            else:
                sigma = (float(sigma), float(sigma))
            k0 = int(ceil(4.0 * float(sigma[0])))
            k1 = int(ceil(4.0 * float(sigma[1])))

            if mode != "wrap":
                input_img = expand(input_img, (k0, k1), mode, cval)
            s0, s1 = input_img.shape
            sum_init = input_img.astype(numpy.float32).sum()
            fftOut = numpy.zeros((s0, s1), dtype=complex)
            fftIn = numpy.zeros((s0, s1), dtype=complex)
            with sem:
                fft = fftw3.Plan(fftIn, fftOut, direction='forward')
                ifft = fftw3.Plan(fftOut, fftIn, direction='backward')

            g0 = gaussian(s0, sigma[0])
            g1 = gaussian(s1, sigma[1])
            g0 = numpy.concatenate((g0[s0 // 2:], g0[:s0 // 2]))  # faster than fftshift
            g1 = numpy.concatenate((g1[s1 // 2:], g1[:s1 // 2]))  # faster than fftshift
            g2 = numpy.outer(g0, g1)
            g2fft = numpy.zeros((s0, s1), dtype=complex)
            fftIn[:, :] = g2.astype(complex)
            fft()
            g2fft[:, :] = fftOut.conjugate()

            fftIn[:, :] = input_img.astype(complex)
            fft()

            fftOut *= g2fft
            ifft()
            out = fftIn.real.astype(numpy.float32)
            sum_out = out.sum()
            res = out * sum_init / sum_out
            if mode != "wrap":
                res = res[k0:-k0, k1:-k1]
        except MemoryError:
            logging.error("MemoryError in FFTw3 part. Falling back on Scipy")
    if res is None:
        has_fftw3 = False
        res = scipy.ndimage.filters.gaussian_filter(input_img, sigma, mode=(mode or "reflect"))
    return res



def shift(input_img, shift_val):
    """
    Shift an array like  scipy.ndimage.interpolation.shift(input_img, shift_val, mode="wrap", order=0) but faster
    @param input_img: 2d numpy array
    @param shift_val: 2-tuple of integers
    @return: shifted image
    """
    re = numpy.zeros_like(input_img)
    s0, s1 = input_img.shape
    d0 = shift_val[0] % s0
    d1 = shift_val[1] % s1
    r0 = (-d0) % s0
    r1 = (-d1) % s1
    re[d0:, d1:] = input_img[:r0, :r1]
    re[:d0, d1:] = input_img[r0:, :r1]
    re[d0:, :d1] = input_img[:r0, r1:]
    re[:d0, :d1] = input_img[r0:, r1:]
    return re

def dog(s1, s2, shape=None):
    """
    2D difference of gaussian
    typically 1 to 10 parameters
    """
    if shape is None:
        maxi = max(s1, s2) * 5
        u, v = numpy.ogrid[-maxi:maxi + 1, -maxi:maxi + 1]
    else:
        u, v = numpy.ogrid[-shape[0] // 2:shape[0] - shape[0] // 2, -shape[1] // 2:shape[1] - shape[1] // 2]
    r2 = u * u + v * v
    centered = numpy.exp(-r2 / (2. * s1) ** 2) / 2. / numpy.pi / s1 - numpy.exp(-r2 / (2. * s2) ** 2) / 2. / numpy.pi / s2
    return centered

def dog_filter(input_img, sigma1, sigma2, mode="reflect", cval=0.0):
    """
    2-dimensional Difference of Gaussian filter implemented with FFTw

    @param input_img:    input_img array to filter
    @type input_img: array-like
    @param sigma: standard deviation for Gaussian kernel.
        The standard deviations of the Gaussian filter are given for each axis as a sequence,
        or as a single number, in which case it is equal for all axes.
    @type sigma: scalar or sequence of scalars
    @param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The ``mode`` parameter determines how the array borders are
        handled, where ``cval`` is the value when mode is equal to
        'constant'. Default is 'reflect'
    @param cval: scalar, optional
            Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
    """

    if 1:  # try:
        sigma = max(sigma1, sigma2)
        if mode != "wrap":
            input_img = expand(input_img, sigma, mode, cval)
        s0, s1 = input_img.shape
        if isinstance(sigma, (list, tuple)):
            k0 = int(ceil(4.0 * float(sigma[0])))
            k1 = int(ceil(4.0 * float(sigma[1])))
        else:
            k0 = k1 = int(ceil(4.0 * float(sigma)))

        if fftw3:
            sum_init = input_img.astype(numpy.float32).sum()
            fftOut = numpy.zeros((s0, s1), dtype=complex)
            fftIn = numpy.zeros((s0, s1), dtype=complex)

            with sem:
                fft = fftw3.Plan(fftIn, fftOut, direction='forward')
                ifft = fftw3.Plan(fftOut, fftIn, direction='backward')


            g2fft = numpy.zeros((s0, s1), dtype=complex)
            fftIn[:, :] = shift(dog(sigma1, sigma2, (s0, s1)), (s0 // 2, s1 // 2)).astype(complex)
            fft()
            g2fft[:, :] = fftOut.conjugate()

            fftIn[:, :] = input_img.astype(complex)
            fft()

            fftOut *= g2fft
            ifft()
            out = fftIn.real.astype(numpy.float32)
            sum_out = out.sum()
            res = out * sum_init / sum_out
        else:
            res = numpy.fft.ifft2(numpy.fft.fft2(input_img.astype(complex)) * \
                                  numpy.fft.fft2(shift(dog(sigma1, sigma2, (s0, s1)), (s0 // 2, s1 // 2)).astype(complex)).conjugate())
        if mode == "wrap":
            return res
        else:
            return res[k0:-k0, k1:-k1]

def expand(input_img, sigma, mode="constant", cval=0.0):

    """Expand array a with its reflection on boundaries

    @param a: 2D array
    @param sigma: float or 2-tuple of floats.
    @param mode:"constant", "nearest", "reflect" or mirror
    @param cval: filling value used for constant, 0.0 by default

    Nota: sigma is the half-width of the kernel. For gaussian convolution it is adviced that it is 4*sigma_of_gaussian
    """
    s0, s1 = input_img.shape
    dtype = input_img.dtype
    if isinstance(sigma, (list, tuple)):
        k0 = int(ceil(float(sigma[0])))
        k1 = int(ceil(float(sigma[1])))
    else:
        k0 = k1 = int(ceil(float(sigma)))
    if k0 > s0 or k1 > s1:
        raise RuntimeError("Makes little sense to apply a kernel (%i,%i)larger than the image (%i,%i)" % (k0, k1, s0, s1))
    output = numpy.zeros((s0 + 2 * k0, s1 + 2 * k1), dtype=dtype) + float(cval)
    output[k0:k0 + s0, k1:k1 + s1] = input_img
    if (mode == "mirror"):
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-2:-k0 - 2:-1, -2:-k1 - 2:-1]
        output[:k0, :k1] = input_img[k0 - 0:0:-1, k1 - 0:0:-1]
        output[:k0, s1 + k1:] = input_img[k0 - 0:0:-1, s1 - 2: s1 - k1 - 2:-1]
        output[s0 + k0:, :k1] = input_img[s0 - 2: s0 - k0 - 2:-1, k1 - 0:0:-1]
        # 4 sides
        output[k0:k0 + s0, :k1] = input_img[:s0, k1 - 0:0:-1]
        output[:k0, k1:k1 + s1] = input_img[k0 - 0:0:-1, :s1]
        output[-k0:, k1:s1 + k1] = input_img[-2:s0 - k0 - 2:-1, :]
        output[k0:s0 + k0, -k1:] = input_img[:, -2:s1 - k1 - 2:-1]
    elif mode == "reflect":
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-1:-k0 - 1:-1, -1:-k1 - 1:-1]
        output[:k0, :k1] = input_img[k0 - 1::-1, k1 - 1::-1]
        output[:k0, s1 + k1:] = input_img[k0 - 1::-1, s1 - 1: s1 - k1 - 1:-1]
        output[s0 + k0:, :k1] = input_img[s0 - 1: s0 - k0 - 1:-1, k1 - 1::-1]
    # 4 sides
        output[k0:k0 + s0, :k1] = input_img[:s0, k1 - 1::-1]
        output[:k0, k1:k1 + s1] = input_img[k0 - 1::-1, :s1]
        output[-k0:, k1:s1 + k1] = input_img[:s0 - k0 - 1:-1, :]
        output[k0:s0 + k0, -k1:] = input_img[:, :s1 - k1 - 1:-1]
    elif mode == "nearest":
    # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-1, -1]
        output[:k0, :k1] = input_img[0, 0]
        output[:k0, s1 + k1:] = input_img[0, -1]
        output[s0 + k0:, :k1] = input_img[-1, 0]
    # 4 sides
        output[k0:k0 + s0, :k1] = numpy.outer(input_img[:, 0], numpy.ones(k1))
        output[:k0, k1:k1 + s1] = numpy.outer(numpy.ones(k0), input_img[0, :])
        output[-k0:, k1:s1 + k1] = numpy.outer(numpy.ones(k0), input_img[-1, :])
        output[k0:s0 + k0, -k1:] = numpy.outer(input_img[:, -1], numpy.ones(k1))
    elif mode == "wrap":
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[:k0, :k1]
        output[:k0, :k1] = input_img[-k0:, -k1:]
        output[:k0, s1 + k1:] = input_img[-k0:, :k1]
        output[s0 + k0:, :k1] = input_img[:k0, -k1:]
        # 4 sides
        output[k0:k0 + s0, :k1] = input_img[:, -k1:]
        output[:k0, k1:k1 + s1] = input_img[-k0:, :]
        output[-k0:, k1:s1 + k1] = input_img[:k0, :]
        output[k0:s0 + k0, -k1:] = input_img[:, :k1]
    elif mode == "constant":
        # Nothing to do
        pass

    else:
        raise RuntimeError("Unknown expand mode: %s" % mode)
    return output


def relabel(label, data, blured, max_size=None):
    """
    Relabel limits the number of region in the label array.
    They are ranked relatively to their max(I0)-max(blur(I0)

    @param label: a label array coming out of scipy.ndimage.measurement.label
    @param data: an array containing the raw data
    @param blured: an array containing the blured data
    @param max_size: the max number of label wanted
    @return array like label
    """
    if relabelCython:
        max_label = label.max()
        a, b, c, d = relabelCython.countThem(label, data, blured)
        count = d
        sortCount = count.argsort()
        invSortCount = sortCount[-1::-1]
        invCutInvSortCount = numpy.zeros(max_label + 1, dtype=int)
        for i, j in enumerate(list(invSortCount[:max_size])):
            invCutInvSortCount[j] = i
        f = lambda i:invCutInvSortCount[i]
        return f(label)
    else:
        logger.warning("relabel Cython module is not available...")
        return label

def averageDark(lstimg, center_method="mean", cutoff=None):
    """
    Averages a serie of dark (or flat) images.
    Centers the result on the mean or the median ...
    but averages all frames within  cutoff*std

    @param lstimg: list of 2D images or a 3D stack
    @param center_method: is the center calculated by a "mean" or a "median"
    @param cutoff: keep all data where (I-center)/std < cutoff
    @return: 2D image averaged
    """
    if "ndim" in dir(lstimg) and lstimg.ndim == 3:
        stack = lstimg.astype(numpy.float32)
        shape = stack.shape[1:]
        length = stack.shape[0]
    else:
        shape = lstimg[0].shape
        length = len(lstimg)
        if length == 1:
            return lstimg[0].astype(numpy.float32)
        stack = numpy.zeros((length, shape[0], shape[1]), dtype=numpy.float32)
        for i, img in enumerate(lstimg):
           stack[i] = img
    if center_method in dir(stack):
        center = stack.__getattribute__(center_method)(axis=0)
    elif center_method == "median":
        center = numpy.median(stack, axis=0)
    else:
        raise RuntimeError("Cannot understand method: %s in averageDark" % center_method)
    if cutoff is None or cutoff <= 0:
        output = center
    else:
        std = stack.std(axis=0)
        strides = 0, std.strides[0], std.strides[1]
        std.shape = 1, shape[0], shape[1]
        std.strides = strides
        center.shape = 1, shape[0], shape[1]
        center.strides = strides
        mask = ((abs(stack - center) / std) > cutoff)
        stack[numpy.where(mask)] = 0.0
        summed = stack.sum(axis=0)
        output = summed / numpy.maximum(1, (length - mask.sum(axis=0)))
    return output

def averageImages(listImages, output=None, threshold=0.1, minimum=None, maximum=None,
                   darks=None, flats=None, filter_="mean", correct_flat_from_dark=False,
                   cutoff=None, format="edf"):
    """
    Takes a list of filenames and create an average frame discarding all saturated pixels.

    @param listImages: list of string representing the filenames
    @param output: name of the optional output file
    @param threshold: what is the upper limit? all pixel > max*(1-threshold) are discareded.
    @param minimum: minimum valid value or True
    @param maximum: maximum valid value
    @param darks: list of dark current images for subtraction
    @param flats: list of flat field images for division
    @param filter_: can be maximum, mean or median (default=mean)
    @param correct_flat_from_dark: shall the flat be re-corrected ?
    @param cutoff: keep all data where (I-center)/std < cutoff
    @return: filename with the data or the data ndarray in case format=None
    """
    if filter_ not in ["min", "max", "median", "mean"]:
        logger.warning("Filter %s not understood. switch to mean filter")
        filter_ = "mean"
    ld = len(listImages)
    sumImg = None
    do_dark = (darks is not None)
    do_flat = (flats is not None)
    dark = None
    flat = None
    big_img = None
    for idx, fn in enumerate(listImages[:]):
        if type(fn) in types.StringTypes:
            logger.info("Reading %s" % fn)
            ds = fabio.open(fn).data
        else:
            ds = fn
            fn = "numpy_array"
            listImages[idx] = fn
        logger.debug("Intensity range for %s is %s --> %s", fn, ds.min(), ds.max())
        shape = ds.shape
        if do_dark and (dark is None):
            if "ndim" in dir(darks) and darks.ndim == 3:
                dark = averageDark(darks, center_method="mean", cutoff=4)
            elif ("__len__" in dir(darks)) and (type(darks[0]) in types.StringTypes):
                dark = averageDark([fabio.open(f).data for f in darks if os.path.exists(f)], center_method="mean", cutoff=4)
            elif ("__len__" in dir(darks)) and ("ndim" in dir(darks[0])) and (darks[0].ndim == 2):
                dark = averageDark(darks, center_method="mean", cutoff=4)
        if do_flat and (flat is  None):
            if "ndim" in dir(flats) and flats.ndim == 3:
                flat = averageDark(flats, center_method="mean", cutoff=4)
            elif ("__len__" in dir(flats)) and (type(flats[0]) in types.StringTypes):
                flat = averageDark([fabio.open(f).data for f in flats if os.path.exists(f)], center_method="mean", cutoff=4)
            elif ("__len__" in dir(flats)) and ("ndim" in dir(flats[0])) and (flats[0].ndim == 2):
                flat = averageDark(flats, center_method="mean", cutoff=4)
            else:
                logger.warning("there is some wrong with flats=%s" % (flats))
            if correct_flat_from_dark:
                flat -= dark
            flat[numpy.where(flat <= 0) ] = 1.0
        correctedImg = numpy.ascontiguousarray(ds, numpy.float32)
        if threshold or minimum or maximum:
            correctedImg = removeSaturatedPixel(correctedImg, threshold, minimum, maximum)
        if do_dark:
            correctedImg -= dark
        if do_flat:
             correctedImg /= flat
        if (cutoff or (filter_ == "median")):
            if big_img is None:
                logger.info("Big array allocation for median filter or cut-off")
                big_img = numpy.zeros((ld, shape[0], shape[1]), dtype=numpy.float32)
            big_img[idx, :, :] = correctedImg
        elif filter_ == "max":
            if sumImg is None:
                sumImg = correctedImg
            else:
                sumImg = numpy.maximum(correctedImg, sumImg)
        elif filter_ == "min":
            if sumImg is None:
                sumImg = correctedImg
            else:
                sumImg = numpy.minimum(correctedImg, sumImg)
        elif filter_ == "mean":
            if sumImg is None:
                sumImg = correctedImg
            else:
                sumImg += correctedImg
    if cutoff or (filter_ == "median"):
        datared = averageDark(big_img, filter_, cutoff)
    else:
        if filter_ in ["max", "min"]:
            datared = numpy.ascontiguousarray(sumImg, dtype=numpy.float32)
        elif filter_ == "mean":
            datared = sumImg / numpy.float32(ld)
    logger.debug("Intensity range in merged dataset : %s --> %s", datared.min(), datared.max())
    if format is not None:
        if format.startswith("."):
            format = format.lstrip(".")
        if (output is None):
            prefix = ""
            for ch in zip(*listImages):
                c = ch[0]
                good = True
                if c in ["*", "?", "[", "{", "("]:
                    good = False
                    break
                for i in ch:
                    if i != c:
                        good = False
                        break
                if good:
                    prefix += c
                else:
                    break
            if filter_ == "max":
                output = "maxfilt%02i-%s.%s" % (ld, prefix, format)
            elif filter_ == "median":
                output = "medfilt%02i-%s.%s" % (ld, prefix, format)
            elif filter_ == "median":
                output = "meanfilt%02i-%s.%s" % (ld, prefix, format)
            else:
                output = "merged%02i-%s.%s" % (ld, prefix, format)
        if format and output:
            if "." in format:  # in case "edf.gz"
                format = format.split(".")[0]
            fabiomod = fabio.__getattribute__(format + "image")
            fabioclass = fabiomod.__getattribute__(format + "image")
            header = {"method":filter_,
                      "nframes":ld,
                      "cutoff":str(cutoff)}
            form = "merged_file_%%0%ii" % len(str(len(listImages)))
            header_list = ["method", "nframes", "cutoff"]
            for i, f in enumerate(listImages):
                name = form % i
                header[name] = f
                header_list.append(name)
            fimg = fabioclass(data=datared,
                              header=header)
#            if "header_keys" in dir(fimg):
            fimg.header_keys = header_list

            fimg.write(output)
            logger.info("Wrote %s" % output)
        return output
    else:
        return datared

def boundingBox(img):
    """
    Tries to guess the bounding box around a valid massif

    @param img: 2D array like
    @return: 4-typle (d0_min, d1_min, d0_max, d1_max)
    """
    img = img.astype(numpy.int)
    img0 = (img.sum(axis=1) > 0).astype(numpy.int)
    img1 = (img.sum(axis=0) > 0).astype(numpy.int)
    dimg0 = img0[1:] - img0[:-1]
    min0 = dimg0.argmax()
    max0 = dimg0.argmin() + 1
    dimg1 = img1[1:] - img1[:-1]
    min1 = dimg1.argmax()
    max1 = dimg1.argmin() + 1
    if max0 == 1:
        max0 = img0.size
    if max1 == 1:
        max1 = img1.size
    return (min0, min1, max0, max1)


def removeSaturatedPixel(ds, threshold=0.1, minimum=None, maximum=None):
    """
    @param ds: a dataset as  ndarray

    @param threshold: what is the upper limit? all pixel > max*(1-threshold) are discareded.
    @param minimum: minumum valid value (or True for auto-guess)
    @param maximum: maximum valid value
    @return: another dataset
    """
    shape = ds.shape
    if ds.dtype == numpy.uint16:
        maxt = (1.0 - threshold) * 65535.0
    elif ds.dtype == numpy.int16:
        maxt = (1.0 - threshold) * 32767.0
    elif ds.dtype == numpy.uint8:
        maxt = (1.0 - threshold) * 255.0
    elif ds.dtype == numpy.int8:
        maxt = (1.0 - threshold) * 127.0
    else:
        if maximum is  None:
            maxt = (1.0 - threshold) * ds.max()
        else:
            maxt = maximum
    if maximum is not None:
        maxt = min(maxt, maximum)
    invalid = (ds > maxt)
    if minimum:
        if  minimum is True:  # automatic guess of the best minimum TODO: use the HWHM to guess the minumum...
            data_min = ds.min()
            x, y = numpy.histogram(numpy.log(ds - data_min + 1.0), bins=100)
            f = interp1d((y[1:] + y[:-1]) / 2.0, -x, bounds_error=False, fill_value= -x.min())
            max_low = fmin(f, y[1], disp=0)
            max_hi = fmin(f, y[-1], disp=0)
            if max_hi > max_low:
                f = interp1d((y[1:] + y[:-1]) / 2.0, x, bounds_error=False)
                min_center = fminbound(f, max_low, max_hi)
            else:
                min_center = max_hi
            minimum = float(numpy.exp(y[((min_center / y) > 1).sum() - 1])) - 1.0 + data_min
            logger.debug("removeSaturatedPixel: best minimum guessed is %s", minimum)
        ds[ds < minimum] = minimum
        ds -= minimum  # - 1.0

    if invalid.sum(dtype=int) == 0:
        logger.debug("No saturated area where found")
        return ds
    gi = ndimage.morphology.binary_dilation(invalid)
    lgi, nc = ndimage.label(gi)
    if nc > 100:
        logger.warning("More than 100 saturated zones were found on this image !!!!")
    for zone in range(nc + 1):
        dzone = (lgi == zone)
        if dzone.sum(dtype=int) > ds.size // 2:
            continue
        min0, min1, max0, max1 = boundingBox(dzone)
        ksize = min(max0 - min0, max1 - min1)
        subset = ds[max(0, min0 - 4 * ksize):min(shape[0], max0 + 4 * ksize), max(0, min1 - 4 * ksize):min(shape[1], max1 + 4 * ksize)]
        while subset.max() > maxt:
            subset = ndimage.median_filter(subset, ksize)
        ds[max(0, min0 - 4 * ksize):min(shape[0], max0 + 4 * ksize), max(0, min1 - 4 * ksize):min(shape[1], max1 + 4 * ksize)] = subset
    fabio.edfimage.edfimage(data=ds).write("removeSaturatedPixel.edf")
    return ds


def binning(input_img, binsize):
    """
    @param input_img: input ndarray
    @param binsize: int or 2-tuple representing the size of the binning
    @return: binned input ndarray
    """
    inputSize = input_img.shape
    outputSize = []
    assert(len(inputSize) == 2)
    if isinstance(binsize, int):
        binsize = (binsize, binsize)
    for i, j in zip(inputSize, binsize):
        assert(i % j == 0)
        outputSize.append(i // j)

    if numpy.array(binsize).prod() < 50:
        out = numpy.zeros(tuple(outputSize))
        for i in xrange(binsize[0]):
            for j in xrange(binsize[1]):
                out += input_img[i::binsize[0], j::binsize[1]]
    else:
        temp = input_img.copy()
        temp.shape = (outputSize[0], binsize[0], outputSize[1], binsize[1])
        out = temp.sum(axis=3).sum(axis=1)
    return out


def unBinning(binnedArray, binsize, norm=True):
    """
    @param binnedArray: input ndarray
    @param binsize: 2-tuple representing the size of the binning
    @return: unBinned input ndarray
    """
    if isinstance(binsize, int):
        binsize = (binsize, binsize)
    outputShape = []
    for i, j in zip(binnedArray.shape, binsize):
        outputShape.append(i * j)
    out = numpy.zeros(tuple(outputShape), dtype=binnedArray.dtype)
    for i in xrange(binsize[0]):
        for j in xrange(binsize[1]):
            out[i::binsize[0], j::binsize[1]] += binnedArray
    if norm:
        out /= binsize[0] * binsize[1]
    return out



def shiftFFT(input_img, shift_val, method="fftw"):
    """
    Do shift using FFTs
    Shift an array like  scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") but faster
    @param input_img: 2d numpy array
    @param shift_val: 2-tuple of float
    @return: shifted image

    """
    # TODO: understand why this is needed !
    if "has_fftw3" not in dir():
        has_fftw3 = ("fftw3" in sys.modules)
    if "has_fftw3" and ("fftw3" not in dir()):
        fftw3 = sys.modules.get("fftw3")
    else:
        fftw3 = None
#    print fftw3
    d0, d1 = input_img.shape
    v0, v1 = shift_val
    f0 = numpy.fft.ifftshift(numpy.arange(-d0 // 2, d0 // 2))
    f1 = numpy.fft.ifftshift(numpy.arange(-d1 // 2, d1 // 2))
    m1, m0 = numpy.meshgrid(f1, f0)
    e0 = numpy.exp(-2j * numpy.pi * v0 * m0 / float(d0))
    e1 = numpy.exp(-2j * numpy.pi * v1 * m1 / float(d1))
    e = e0 * e1
    if method.startswith("fftw") and (fftw3 is not None):
        input_ = numpy.zeros((d0, d1), dtype=complex)
        output = numpy.zeros((d0, d1), dtype=complex)
        with sem:
            fft = fftw3.Plan(input_, output, direction='forward', flags=['estimate'])
            ifft = fftw3.Plan(output, input_, direction='backward', flags=['estimate'])
        input_[:, :] = input_img.astype(complex)
        fft()
        output *= e
        ifft()
        out = input_ / input_.size
    else:
        out = numpy.fft.ifft2(numpy.fft.fft2(input_img) * e)
    return abs(out)

def maximum_position(img):
    """
    Same as scipy.ndimage.measurements.maximum_position:
    Find the position of the maximum of the values of the array.

    @param img: 2-D image
    @return: 2-tuple of int with the position of the maximum
    """
    maxarg = numpy.argmax(img)
    _, s1 = img.shape
    return (maxarg // s1, maxarg % s1)

def center_of_mass(img):
    """
    Calculate the center of mass of of the array.
    Like scipy.ndimage.measurements.center_of_mass
    @param img: 2-D array
    @return: 2-tuple of float with the center of mass
    """
    d0, d1 = img.shape
    a0, a1 = numpy.ogrid[:d0, :d1]
    img = img.astype("float64")
    img /= img.sum()
    return ((a0 * img).sum(), (a1 * img).sum())

def measure_offset(img1, img2, method="numpy", withLog=False, withCorr=False):
    """
    Measure the actual offset between 2 images
    @param img1: ndarray, first image
    @param img2: ndarray, second image, same shape as img1
    @param withLog: shall we return logs as well ? boolean
    @return: tuple of floats with the offsets
    """
    method = str(method)
    ################################################################################
    # Start convolutions
    ################################################################################
    shape = img1.shape
    logs = []
    assert img2.shape == shape
    t0 = time.time()
    if method[:4] == "fftw" and (fftw3 is not None):
        input_ = numpy.zeros(shape, dtype=complex)
        output = numpy.zeros(shape, dtype=complex)
        with sem:
            fft = fftw3.Plan(input_, output, direction='forward', flags=['measure'])
            ifft = fftw3.Plan(output, input_, direction='backward', flags=['measure'])
        input_[:, :] = img2.astype(complex)
        fft()
        temp = output.conjugate()
        input_[:, :] = img1.astype(complex)
        fft()
        output *= temp
        ifft()
        res = input_.real / input_.size
#    elif method[:4] == "cuda" and (cu_fft is not None):
#        with sem:
#            cuda_correlate = CudaCorrelate(shape)
#            res = cuda_correlate.correlate(img1, img2)
    else:  # use numpy fftpack
        i1f = numpy.fft.fft2(img1)
        i2f = numpy.fft.fft2(img2)
        res = numpy.fft.ifft2(i1f * i2f.conjugate()).real
    t1 = time.time()

    ################################################################################
    # END of convolutions
    ################################################################################
    offset1 = maximum_position(res)
    res = shift(res, (shape[0] // 2 , shape[1] // 2))
    mean = res.mean(dtype="float64")
    maxi = res.max()
    std = res.std(dtype="float64")
    SN = (maxi - mean) / std
    new = numpy.maximum(numpy.zeros(shape), res - numpy.ones(shape) * (mean + std * SN * 0.9))
    com2 = center_of_mass(new)
    logs.append("MeasureOffset: fine result of the centered image: %s %s " % com2)
    offset2 = ((com2[0] - shape[0] // 2) % shape[0] , (com2[1] - shape[1] // 2) % shape[1])
    delta0 = (offset2[0] - offset1[0]) % shape[0]
    delta1 = (offset2[1] - offset1[1]) % shape[1]
    if delta0 > shape[0] // 2:
        delta0 -= shape[0]
    if delta1 > shape[1] // 2:
        delta1 -= shape[1]
    if (abs(delta0) > 2) or (abs(delta1) > 2):
        logs.append("MeasureOffset: Raw offset is %s and refined is %s. Please investigate !" % (offset1, offset2))
    listOffset = list(offset2)
    if listOffset[0] > shape[0] // 2:
        listOffset[0] -= shape[0]
    if listOffset[1] > shape[1] // 2:
        listOffset[1] -= shape[1]
    offset = tuple(listOffset)
    t2 = time.time()
    logs.append("MeasureOffset: fine result: %s %s" % offset)
    logs.append("MeasureOffset: execution time: %.3fs with %.3fs for FFTs" % (t2 - t0, t1 - t0))
    if withLog:
        if withCorr:
            return offset, logs, new
        else:
            return offset, logs
    else:
        if withCorr:
            return offset, new
        else:
            return offset


def expand_args(args):
    """
    Takes an argv and expand it (under Windows, cmd does not convert *.tif into a list of files.
    Keeps only valid files (thanks to glob)

    @param args: list of files or wilcards
    @return: list of actual args
    """
    new = []
    for afile in  args:
        if os.path.exists(afile):
            new.append(afile)
        else:
            new += glob.glob(afile)
    return new


def _get_data_path(filename):
    """
    @param filename: the name of the requested data file.
    @type filename: str

    Can search root of data directory in:
    - Environment variable PYFAI_DATA
    - path hard coded into pyFAI.directories.data_dir
    - where this file is installed.

    In the future ....
    This method try to find the requested ui-name following the
    xfreedesktop recommendations. First the source directory then
    the system locations

    For now, just perform a recursive search
    """
    # when using bootstrap the file is located under the build directory
#    real_filename = os.path.abspath(os.path.join(os.path.dirname(__file__),
#                                                 os.path.pardir,
#                                                 os.path.pardir,
#                                                 os.path.pardir,
#                                                 'data',
#                                                 filename))
#    if not os.path.exists(real_filename):
    resources = [os.environ.get("PYFAI_DATA"), data_dir, os.path.dirname(__file__)]
    try:
        import xdg.BaseDirectory
        resources += xdg.BaseDirectory.load_data_paths("pyFAI")
    except ImportError:
        pass

    for resource in resources:
        if not resource:
            continue
        real_filename = os.path.join(resource, filename)
        if os.path.exists(real_filename):
            return real_filename
    else:
        raise RuntimeError("Can not find the [%s] resource, "
                        " something went wrong !!!" % (real_filename,))


def get_ui_file(filename):
    return _get_data_path(os.path.join("gui", filename))
#    return _get_data_path(filename)


def get_cl_file(filename):
#    return _get_data_path(os.path.join("openCL", filename))
    return _get_data_path(filename)


def concatenate_cl_kernel(filenames):
    """
    @param filenames: filenames containing the kernels
    @type kernel@: list of str which can be filename of kernel as a string.

    this method concatenates all the kernel from the list
    """
    kernel = ""
    for filename in filenames:
        with open(get_cl_file(filename), "r") as f:
            kernel += f.read()

    return kernel


def deg2rad(dd):
    """
    Convert degrees to radian in the range -pi->pi

    @param dd: angle in degrees

    Nota: depending on the platform it could be 0<2pi
    A branch is cheaper than a trigo operation
    """
    while dd > 180.0:
        dd -= 360.0
    while dd <= -180.0:
        dd += 360.0
    return dd * pi / 180.

class lazy_property(object):
    '''
    meant to be used for lazy evaluation of an object attribute.
    property should represent non-mutable data, as it replaces itself.
    '''

    def __init__(self, fget):
        self.fget = fget
        self.func_name = fget.__name__


    def __get__(self, obj, cls):
        if obj is None:
            return None
        value = self.fget(obj)
        setattr(obj, self.func_name, value)
        return value

try:
    from numpy import percentile
except ImportError: #backport percentile from numpy 1.6.2
    np = numpy
    def percentile(a, q, axis=None, out=None, overwrite_input=False):
        """
        Compute the qth percentile of the data along the specified axis.

        Returns the qth percentile of the array elements.

        Parameters
        ----------
        a : array_like
            Input array or object that can be converted to an array.
        q : float in range of [0,100] (or sequence of floats)
            Percentile to compute which must be between 0 and 100 inclusive.
        axis : int, optional
            Axis along which the percentiles are computed. The default (None)
            is to compute the median along a flattened version of the array.
        out : ndarray, optional
            Alternative output array in which to place the result. It must
            have the same shape and buffer length as the expected output,
            but the type (of the output) will be cast if necessary.
        overwrite_input : bool, optional
           If True, then allow use of memory of input array `a` for
           calculations. The input array will be modified by the call to
           median. This will save memory when you do not need to preserve
           the contents of the input array. Treat the input as undefined,
           but it will probably be fully or partially sorted.
           Default is False. Note that, if `overwrite_input` is True and the
           input is not already an array, an error will be raised.

        Returns
        -------
        pcntile : ndarray
            A new array holding the result (unless `out` is specified, in
            which case that array is returned instead).  If the input contains
            integers, or floats of smaller precision than 64, then the output
            data-type is float64.  Otherwise, the output data-type is the same
            as that of the input.

        See Also
        --------
        mean, median

        Notes
        -----
        Given a vector V of length N, the qth percentile of V is the qth ranked
        value in a sorted copy of V.  A weighted average of the two nearest
        neighbors is used if the normalized ranking does not match q exactly.
        The same as the median if ``q=0.5``, the same as the minimum if ``q=0``
        and the same as the maximum if ``q=1``.

        Examples
        --------
        >>> a = np.array([[10, 7, 4], [3, 2, 1]])
        >>> a
        array([[10,  7,  4],
               [ 3,  2,  1]])
        >>> np.percentile(a, 50)
        3.5
        >>> np.percentile(a, 0.5, axis=0)
        array([ 6.5,  4.5,  2.5])
        >>> np.percentile(a, 50, axis=1)
        array([ 7.,  2.])

        >>> m = np.percentile(a, 50, axis=0)
        >>> out = np.zeros_like(m)
        >>> np.percentile(a, 50, axis=0, out=m)
        array([ 6.5,  4.5,  2.5])
        >>> m
        array([ 6.5,  4.5,  2.5])

        >>> b = a.copy()
        >>> np.percentile(b, 50, axis=1, overwrite_input=True)
        array([ 7.,  2.])
        >>> assert not np.all(a==b)
        >>> b = a.copy()
        >>> np.percentile(b, 50, axis=None, overwrite_input=True)
        3.5

        """
        a = np.asarray(a)

        if q == 0:
            return a.min(axis=axis, out=out)
        elif q == 100:
            return a.max(axis=axis, out=out)

        if overwrite_input:
            if axis is None:
                sorted = a.ravel()
                sorted.sort()
            else:
                a.sort(axis=axis)
                sorted = a
        else:
            sorted = np.sort(a, axis=axis)
        if axis is None:
            axis = 0

        return _compute_qth_percentile(sorted, q, axis, out)

    # handle sequence of q's without calling sort multiple times
    def _compute_qth_percentile(sorted, q, axis, out):
        if not np.isscalar(q):
            p = [_compute_qth_percentile(sorted, qi, axis, None)
                 for qi in q]

            if out is not None:
                out.flat = p

            return p

        q = q / 100.0
        if (q < 0) or (q > 1):
            raise ValueError, "percentile must be either in the range [0,100]"

        indexer = [slice(None)] * sorted.ndim
        Nx = sorted.shape[axis]
        index = q * (Nx - 1)
        i = int(index)
        if i == index:
            indexer[axis] = slice(i, i + 1)
            weights = np.array(1)
            sumval = 1.0
        else:
            indexer[axis] = slice(i, i + 2)
            j = i + 1
            weights = np.array([(j - index), (index - i)], float)
            wshape = [1] * sorted.ndim
            wshape[axis] = 2
            weights.shape = wshape
            sumval = weights.sum()

        # Use add.reduce in both cases to coerce data type as well as
        #   check and use out array.
        return np.add.reduce(sorted[indexer] * weights, axis=axis, out=out) / sumval

def convert_CamelCase(name):
    """
    convert a function name in CamelCase into camel_case
    """
    import re
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()

def readFloatFromKeyboard(text, dictVar):
    """
    Read float from the keyboard ....

    @param text: string to be displayed
    @param dictVar: dict of this type: {1: [set_dist_min],3: [set_dist_min, set_dist_guess, set_dist_max]}
    """
    fromkb = raw_input(text).strip()
    try:
        vals = [float(i) for i in fromkb.split()]
    except:
        logging.error("Error in parsing values")
    else:
        found = False
        for i in dictVar:
            if len(vals) == i:
                found = True
                for j in range(i):
                    dictVar[i][j](vals[j])
        if not found:
            logger.error("You should provide the good number of floats")