/usr/lib/python2.7/dist-packages/pyFAI/utils.py is in pyfai 0.10.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal integration
# https://github.com/kif/pyFAI
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Utilities, mainly for image treatment
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/10/2014"
__status__ = "production"
import logging, sys, types, os, glob
import threading
sem = threading.Semaphore() # global lock for image processing initialization
import numpy
import fabio
from scipy import ndimage
from scipy.interpolate import interp1d
from math import ceil, sin, cos, atan2, pi
try:
from . import relabel as relabelCython
except:
relabelCython = None
try:
from .directories import data_dir
except ImportError:
data_dir = None
from scipy.optimize.optimize import fmin, fminbound
import scipy.ndimage.filters
logger = logging.getLogger("pyFAI.utils")
import time
timelog = logging.getLogger("pyFAI.timeit")
cu_fft = None # No cuda here !
if sys.platform != "win32":
WindowsError = RuntimeError
has_fftw3 = None
try:
import fftw3
has_fftw3 = True
except (ImportError, WindowsError) as err:
logger.warn("Exception %s: FFTw3 not available. Falling back on Scipy", err)
has_fftw3 = False
import traceback
def deprecated(func):
def wrapper(*arg, **kw):
"""
decorator that deprecates the use of a function
"""
logger.warning("%s is Deprecated !!! %s" % (func.func_name, os.linesep.join([""] + traceback.format_stack()[:-1])))
return func(*arg, **kw)
return wrapper
def gaussian(M, std):
"""
Return a Gaussian window of length M with standard-deviation std.
This differs from the scipy.signal.gaussian implementation as:
- The default for sym=False (needed for gaussian filtering without shift)
- This implementation is normalized
@param M: length of the windows (int)
@param std: standatd deviation sigma
The FWHM is 2*numpy.sqrt(2 * numpy.pi)*std
"""
x = numpy.arange(M) - M / 2.0
return numpy.exp(-(x / std) ** 2 / 2.0) / std / numpy.sqrt(2 * numpy.pi)
def float_(val):
"""
Convert anything to a float ... or None if not applicable
"""
try:
f = float(str(val).strip())
except ValueError:
f = None
return f
def int_(val):
"""
Convert anything to an int ... or None if not applicable
"""
try:
f = int(str(val).strip())
except ValueError:
f = None
return f
def str_(val):
"""
Convert anything to a string ... but None -> ""
"""
s = ""
if val != None:
s = str(val)
return s
def timeit(func):
def wrapper(*arg, **kw):
'''This is the docstring of timeit:
a decorator that logs the execution time'''
t1 = time.time()
res = func(*arg, **kw)
t2 = time.time()
if "func_name" in dir(func):
name = func.func_name
else:
name = str(func)
timelog.warning("%s took %.3fs" % (name, t2 - t1))
return res
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
return wrapper
def gaussian_filter(input_img, sigma, mode="reflect", cval=0.0):
"""
2-dimensional Gaussian filter implemented with FFTw
@param input_img: input array to filter
@type input_img: array-like
@param sigma: standard deviation for Gaussian kernel.
The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes.
@type sigma: scalar or sequence of scalars
@param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
The ``mode`` parameter determines how the array borders are
handled, where ``cval`` is the value when mode is equal to
'constant'. Default is 'reflect'
@param cval: scalar, optional
Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
"""
res = None
# TODO: understand why this is needed !
if "has_fftw3" not in dir():
has_fftw3 = ("fftw3" in sys.modules)
if has_fftw3:
try:
if isinstance(sigma, (list, tuple)):
sigma = (float(sigma[0]), float(sigma[1]))
else:
sigma = (float(sigma), float(sigma))
k0 = int(ceil(4.0 * float(sigma[0])))
k1 = int(ceil(4.0 * float(sigma[1])))
if mode != "wrap":
input_img = expand(input_img, (k0, k1), mode, cval)
s0, s1 = input_img.shape
sum_init = input_img.astype(numpy.float32).sum()
fftOut = numpy.zeros((s0, s1), dtype=complex)
fftIn = numpy.zeros((s0, s1), dtype=complex)
with sem:
fft = fftw3.Plan(fftIn, fftOut, direction='forward')
ifft = fftw3.Plan(fftOut, fftIn, direction='backward')
g0 = gaussian(s0, sigma[0])
g1 = gaussian(s1, sigma[1])
g0 = numpy.concatenate((g0[s0 // 2:], g0[:s0 // 2])) # faster than fftshift
g1 = numpy.concatenate((g1[s1 // 2:], g1[:s1 // 2])) # faster than fftshift
g2 = numpy.outer(g0, g1)
g2fft = numpy.zeros((s0, s1), dtype=complex)
fftIn[:, :] = g2.astype(complex)
fft()
g2fft[:, :] = fftOut.conjugate()
fftIn[:, :] = input_img.astype(complex)
fft()
fftOut *= g2fft
ifft()
out = fftIn.real.astype(numpy.float32)
sum_out = out.sum()
res = out * sum_init / sum_out
if mode != "wrap":
res = res[k0:-k0, k1:-k1]
except MemoryError:
logging.error("MemoryError in FFTw3 part. Falling back on Scipy")
if res is None:
has_fftw3 = False
res = scipy.ndimage.filters.gaussian_filter(input_img, sigma, mode=(mode or "reflect"))
return res
def shift(input_img, shift_val):
"""
Shift an array like scipy.ndimage.interpolation.shift(input_img, shift_val, mode="wrap", order=0) but faster
@param input_img: 2d numpy array
@param shift_val: 2-tuple of integers
@return: shifted image
"""
re = numpy.zeros_like(input_img)
s0, s1 = input_img.shape
d0 = shift_val[0] % s0
d1 = shift_val[1] % s1
r0 = (-d0) % s0
r1 = (-d1) % s1
re[d0:, d1:] = input_img[:r0, :r1]
re[:d0, d1:] = input_img[r0:, :r1]
re[d0:, :d1] = input_img[:r0, r1:]
re[:d0, :d1] = input_img[r0:, r1:]
return re
def dog(s1, s2, shape=None):
"""
2D difference of gaussian
typically 1 to 10 parameters
"""
if shape is None:
maxi = max(s1, s2) * 5
u, v = numpy.ogrid[-maxi:maxi + 1, -maxi:maxi + 1]
else:
u, v = numpy.ogrid[-shape[0] // 2:shape[0] - shape[0] // 2, -shape[1] // 2:shape[1] - shape[1] // 2]
r2 = u * u + v * v
centered = numpy.exp(-r2 / (2. * s1) ** 2) / 2. / numpy.pi / s1 - numpy.exp(-r2 / (2. * s2) ** 2) / 2. / numpy.pi / s2
return centered
def dog_filter(input_img, sigma1, sigma2, mode="reflect", cval=0.0):
"""
2-dimensional Difference of Gaussian filter implemented with FFTw
@param input_img: input_img array to filter
@type input_img: array-like
@param sigma: standard deviation for Gaussian kernel.
The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes.
@type sigma: scalar or sequence of scalars
@param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
The ``mode`` parameter determines how the array borders are
handled, where ``cval`` is the value when mode is equal to
'constant'. Default is 'reflect'
@param cval: scalar, optional
Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
"""
if 1: # try:
sigma = max(sigma1, sigma2)
if mode != "wrap":
input_img = expand(input_img, sigma, mode, cval)
s0, s1 = input_img.shape
if isinstance(sigma, (list, tuple)):
k0 = int(ceil(4.0 * float(sigma[0])))
k1 = int(ceil(4.0 * float(sigma[1])))
else:
k0 = k1 = int(ceil(4.0 * float(sigma)))
if fftw3:
sum_init = input_img.astype(numpy.float32).sum()
fftOut = numpy.zeros((s0, s1), dtype=complex)
fftIn = numpy.zeros((s0, s1), dtype=complex)
with sem:
fft = fftw3.Plan(fftIn, fftOut, direction='forward')
ifft = fftw3.Plan(fftOut, fftIn, direction='backward')
g2fft = numpy.zeros((s0, s1), dtype=complex)
fftIn[:, :] = shift(dog(sigma1, sigma2, (s0, s1)), (s0 // 2, s1 // 2)).astype(complex)
fft()
g2fft[:, :] = fftOut.conjugate()
fftIn[:, :] = input_img.astype(complex)
fft()
fftOut *= g2fft
ifft()
out = fftIn.real.astype(numpy.float32)
sum_out = out.sum()
res = out * sum_init / sum_out
else:
res = numpy.fft.ifft2(numpy.fft.fft2(input_img.astype(complex)) * \
numpy.fft.fft2(shift(dog(sigma1, sigma2, (s0, s1)), (s0 // 2, s1 // 2)).astype(complex)).conjugate())
if mode == "wrap":
return res
else:
return res[k0:-k0, k1:-k1]
def expand(input_img, sigma, mode="constant", cval=0.0):
"""Expand array a with its reflection on boundaries
@param a: 2D array
@param sigma: float or 2-tuple of floats.
@param mode:"constant", "nearest", "reflect" or mirror
@param cval: filling value used for constant, 0.0 by default
Nota: sigma is the half-width of the kernel. For gaussian convolution it is adviced that it is 4*sigma_of_gaussian
"""
s0, s1 = input_img.shape
dtype = input_img.dtype
if isinstance(sigma, (list, tuple)):
k0 = int(ceil(float(sigma[0])))
k1 = int(ceil(float(sigma[1])))
else:
k0 = k1 = int(ceil(float(sigma)))
if k0 > s0 or k1 > s1:
raise RuntimeError("Makes little sense to apply a kernel (%i,%i)larger than the image (%i,%i)" % (k0, k1, s0, s1))
output = numpy.zeros((s0 + 2 * k0, s1 + 2 * k1), dtype=dtype) + float(cval)
output[k0:k0 + s0, k1:k1 + s1] = input_img
if (mode == "mirror"):
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-2:-k0 - 2:-1, -2:-k1 - 2:-1]
output[:k0, :k1] = input_img[k0 - 0:0:-1, k1 - 0:0:-1]
output[:k0, s1 + k1:] = input_img[k0 - 0:0:-1, s1 - 2: s1 - k1 - 2:-1]
output[s0 + k0:, :k1] = input_img[s0 - 2: s0 - k0 - 2:-1, k1 - 0:0:-1]
# 4 sides
output[k0:k0 + s0, :k1] = input_img[:s0, k1 - 0:0:-1]
output[:k0, k1:k1 + s1] = input_img[k0 - 0:0:-1, :s1]
output[-k0:, k1:s1 + k1] = input_img[-2:s0 - k0 - 2:-1, :]
output[k0:s0 + k0, -k1:] = input_img[:, -2:s1 - k1 - 2:-1]
elif mode == "reflect":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-1:-k0 - 1:-1, -1:-k1 - 1:-1]
output[:k0, :k1] = input_img[k0 - 1::-1, k1 - 1::-1]
output[:k0, s1 + k1:] = input_img[k0 - 1::-1, s1 - 1: s1 - k1 - 1:-1]
output[s0 + k0:, :k1] = input_img[s0 - 1: s0 - k0 - 1:-1, k1 - 1::-1]
# 4 sides
output[k0:k0 + s0, :k1] = input_img[:s0, k1 - 1::-1]
output[:k0, k1:k1 + s1] = input_img[k0 - 1::-1, :s1]
output[-k0:, k1:s1 + k1] = input_img[:s0 - k0 - 1:-1, :]
output[k0:s0 + k0, -k1:] = input_img[:, :s1 - k1 - 1:-1]
elif mode == "nearest":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-1, -1]
output[:k0, :k1] = input_img[0, 0]
output[:k0, s1 + k1:] = input_img[0, -1]
output[s0 + k0:, :k1] = input_img[-1, 0]
# 4 sides
output[k0:k0 + s0, :k1] = numpy.outer(input_img[:, 0], numpy.ones(k1))
output[:k0, k1:k1 + s1] = numpy.outer(numpy.ones(k0), input_img[0, :])
output[-k0:, k1:s1 + k1] = numpy.outer(numpy.ones(k0), input_img[-1, :])
output[k0:s0 + k0, -k1:] = numpy.outer(input_img[:, -1], numpy.ones(k1))
elif mode == "wrap":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[:k0, :k1]
output[:k0, :k1] = input_img[-k0:, -k1:]
output[:k0, s1 + k1:] = input_img[-k0:, :k1]
output[s0 + k0:, :k1] = input_img[:k0, -k1:]
# 4 sides
output[k0:k0 + s0, :k1] = input_img[:, -k1:]
output[:k0, k1:k1 + s1] = input_img[-k0:, :]
output[-k0:, k1:s1 + k1] = input_img[:k0, :]
output[k0:s0 + k0, -k1:] = input_img[:, :k1]
elif mode == "constant":
# Nothing to do
pass
else:
raise RuntimeError("Unknown expand mode: %s" % mode)
return output
def relabel(label, data, blured, max_size=None):
"""
Relabel limits the number of region in the label array.
They are ranked relatively to their max(I0)-max(blur(I0)
@param label: a label array coming out of scipy.ndimage.measurement.label
@param data: an array containing the raw data
@param blured: an array containing the blured data
@param max_size: the max number of label wanted
@return array like label
"""
if relabelCython:
max_label = label.max()
a, b, c, d = relabelCython.countThem(label, data, blured)
count = d
sortCount = count.argsort()
invSortCount = sortCount[-1::-1]
invCutInvSortCount = numpy.zeros(max_label + 1, dtype=int)
for i, j in enumerate(list(invSortCount[:max_size])):
invCutInvSortCount[j] = i
f = lambda i:invCutInvSortCount[i]
return f(label)
else:
logger.warning("relabel Cython module is not available...")
return label
def averageDark(lstimg, center_method="mean", cutoff=None):
"""
Averages a serie of dark (or flat) images.
Centers the result on the mean or the median ...
but averages all frames within cutoff*std
@param lstimg: list of 2D images or a 3D stack
@param center_method: is the center calculated by a "mean" or a "median"
@param cutoff: keep all data where (I-center)/std < cutoff
@return: 2D image averaged
"""
if "ndim" in dir(lstimg) and lstimg.ndim == 3:
stack = lstimg.astype(numpy.float32)
shape = stack.shape[1:]
length = stack.shape[0]
else:
shape = lstimg[0].shape
length = len(lstimg)
if length == 1:
return lstimg[0].astype(numpy.float32)
stack = numpy.zeros((length, shape[0], shape[1]), dtype=numpy.float32)
for i, img in enumerate(lstimg):
stack[i] = img
if center_method in dir(stack):
center = stack.__getattribute__(center_method)(axis=0)
elif center_method == "median":
center = numpy.median(stack, axis=0)
else:
raise RuntimeError("Cannot understand method: %s in averageDark" % center_method)
if cutoff is None or cutoff <= 0:
output = center
else:
std = stack.std(axis=0)
strides = 0, std.strides[0], std.strides[1]
std.shape = 1, shape[0], shape[1]
std.strides = strides
center.shape = 1, shape[0], shape[1]
center.strides = strides
mask = ((abs(stack - center) / std) > cutoff)
stack[numpy.where(mask)] = 0.0
summed = stack.sum(axis=0)
output = summed / numpy.maximum(1, (length - mask.sum(axis=0)))
return output
def averageImages(listImages, output=None, threshold=0.1, minimum=None, maximum=None,
darks=None, flats=None, filter_="mean", correct_flat_from_dark=False,
cutoff=None, format="edf"):
"""
Takes a list of filenames and create an average frame discarding all saturated pixels.
@param listImages: list of string representing the filenames
@param output: name of the optional output file
@param threshold: what is the upper limit? all pixel > max*(1-threshold) are discareded.
@param minimum: minimum valid value or True
@param maximum: maximum valid value
@param darks: list of dark current images for subtraction
@param flats: list of flat field images for division
@param filter_: can be maximum, mean or median (default=mean)
@param correct_flat_from_dark: shall the flat be re-corrected ?
@param cutoff: keep all data where (I-center)/std < cutoff
@return: filename with the data or the data ndarray in case format=None
"""
if filter_ not in ["min", "max", "median", "mean"]:
logger.warning("Filter %s not understood. switch to mean filter")
filter_ = "mean"
ld = len(listImages)
sumImg = None
do_dark = (darks is not None)
do_flat = (flats is not None)
dark = None
flat = None
big_img = None
for idx, fn in enumerate(listImages[:]):
if type(fn) in types.StringTypes:
logger.info("Reading %s" % fn)
ds = fabio.open(fn).data
else:
ds = fn
fn = "numpy_array"
listImages[idx] = fn
logger.debug("Intensity range for %s is %s --> %s", fn, ds.min(), ds.max())
shape = ds.shape
if do_dark and (dark is None):
if "ndim" in dir(darks) and darks.ndim == 3:
dark = averageDark(darks, center_method="mean", cutoff=4)
elif ("__len__" in dir(darks)) and (type(darks[0]) in types.StringTypes):
dark = averageDark([fabio.open(f).data for f in darks if os.path.exists(f)], center_method="mean", cutoff=4)
elif ("__len__" in dir(darks)) and ("ndim" in dir(darks[0])) and (darks[0].ndim == 2):
dark = averageDark(darks, center_method="mean", cutoff=4)
if do_flat and (flat is None):
if "ndim" in dir(flats) and flats.ndim == 3:
flat = averageDark(flats, center_method="mean", cutoff=4)
elif ("__len__" in dir(flats)) and (type(flats[0]) in types.StringTypes):
flat = averageDark([fabio.open(f).data for f in flats if os.path.exists(f)], center_method="mean", cutoff=4)
elif ("__len__" in dir(flats)) and ("ndim" in dir(flats[0])) and (flats[0].ndim == 2):
flat = averageDark(flats, center_method="mean", cutoff=4)
else:
logger.warning("there is some wrong with flats=%s" % (flats))
if correct_flat_from_dark:
flat -= dark
flat[numpy.where(flat <= 0) ] = 1.0
correctedImg = numpy.ascontiguousarray(ds, numpy.float32)
if threshold or minimum or maximum:
correctedImg = removeSaturatedPixel(correctedImg, threshold, minimum, maximum)
if do_dark:
correctedImg -= dark
if do_flat:
correctedImg /= flat
if (cutoff or (filter_ == "median")):
if big_img is None:
logger.info("Big array allocation for median filter or cut-off")
big_img = numpy.zeros((ld, shape[0], shape[1]), dtype=numpy.float32)
big_img[idx, :, :] = correctedImg
elif filter_ == "max":
if sumImg is None:
sumImg = correctedImg
else:
sumImg = numpy.maximum(correctedImg, sumImg)
elif filter_ == "min":
if sumImg is None:
sumImg = correctedImg
else:
sumImg = numpy.minimum(correctedImg, sumImg)
elif filter_ == "mean":
if sumImg is None:
sumImg = correctedImg
else:
sumImg += correctedImg
if cutoff or (filter_ == "median"):
datared = averageDark(big_img, filter_, cutoff)
else:
if filter_ in ["max", "min"]:
datared = numpy.ascontiguousarray(sumImg, dtype=numpy.float32)
elif filter_ == "mean":
datared = sumImg / numpy.float32(ld)
logger.debug("Intensity range in merged dataset : %s --> %s", datared.min(), datared.max())
if format is not None:
if format.startswith("."):
format = format.lstrip(".")
if (output is None):
prefix = ""
for ch in zip(*listImages):
c = ch[0]
good = True
if c in ["*", "?", "[", "{", "("]:
good = False
break
for i in ch:
if i != c:
good = False
break
if good:
prefix += c
else:
break
if filter_ == "max":
output = "maxfilt%02i-%s.%s" % (ld, prefix, format)
elif filter_ == "median":
output = "medfilt%02i-%s.%s" % (ld, prefix, format)
elif filter_ == "median":
output = "meanfilt%02i-%s.%s" % (ld, prefix, format)
else:
output = "merged%02i-%s.%s" % (ld, prefix, format)
if format and output:
if "." in format: # in case "edf.gz"
format = format.split(".")[0]
fabiomod = fabio.__getattribute__(format + "image")
fabioclass = fabiomod.__getattribute__(format + "image")
header = {"method":filter_,
"nframes":ld,
"cutoff":str(cutoff)}
form = "merged_file_%%0%ii" % len(str(len(listImages)))
header_list = ["method", "nframes", "cutoff"]
for i, f in enumerate(listImages):
name = form % i
header[name] = f
header_list.append(name)
fimg = fabioclass(data=datared,
header=header)
# if "header_keys" in dir(fimg):
fimg.header_keys = header_list
fimg.write(output)
logger.info("Wrote %s" % output)
return output
else:
return datared
def boundingBox(img):
"""
Tries to guess the bounding box around a valid massif
@param img: 2D array like
@return: 4-typle (d0_min, d1_min, d0_max, d1_max)
"""
img = img.astype(numpy.int)
img0 = (img.sum(axis=1) > 0).astype(numpy.int)
img1 = (img.sum(axis=0) > 0).astype(numpy.int)
dimg0 = img0[1:] - img0[:-1]
min0 = dimg0.argmax()
max0 = dimg0.argmin() + 1
dimg1 = img1[1:] - img1[:-1]
min1 = dimg1.argmax()
max1 = dimg1.argmin() + 1
if max0 == 1:
max0 = img0.size
if max1 == 1:
max1 = img1.size
return (min0, min1, max0, max1)
def removeSaturatedPixel(ds, threshold=0.1, minimum=None, maximum=None):
"""
@param ds: a dataset as ndarray
@param threshold: what is the upper limit? all pixel > max*(1-threshold) are discareded.
@param minimum: minumum valid value (or True for auto-guess)
@param maximum: maximum valid value
@return: another dataset
"""
shape = ds.shape
if ds.dtype == numpy.uint16:
maxt = (1.0 - threshold) * 65535.0
elif ds.dtype == numpy.int16:
maxt = (1.0 - threshold) * 32767.0
elif ds.dtype == numpy.uint8:
maxt = (1.0 - threshold) * 255.0
elif ds.dtype == numpy.int8:
maxt = (1.0 - threshold) * 127.0
else:
if maximum is None:
maxt = (1.0 - threshold) * ds.max()
else:
maxt = maximum
if maximum is not None:
maxt = min(maxt, maximum)
invalid = (ds > maxt)
if minimum:
if minimum is True: # automatic guess of the best minimum TODO: use the HWHM to guess the minumum...
data_min = ds.min()
x, y = numpy.histogram(numpy.log(ds - data_min + 1.0), bins=100)
f = interp1d((y[1:] + y[:-1]) / 2.0, -x, bounds_error=False, fill_value= -x.min())
max_low = fmin(f, y[1], disp=0)
max_hi = fmin(f, y[-1], disp=0)
if max_hi > max_low:
f = interp1d((y[1:] + y[:-1]) / 2.0, x, bounds_error=False)
min_center = fminbound(f, max_low, max_hi)
else:
min_center = max_hi
minimum = float(numpy.exp(y[((min_center / y) > 1).sum() - 1])) - 1.0 + data_min
logger.debug("removeSaturatedPixel: best minimum guessed is %s", minimum)
ds[ds < minimum] = minimum
ds -= minimum # - 1.0
if invalid.sum(dtype=int) == 0:
logger.debug("No saturated area where found")
return ds
gi = ndimage.morphology.binary_dilation(invalid)
lgi, nc = ndimage.label(gi)
if nc > 100:
logger.warning("More than 100 saturated zones were found on this image !!!!")
for zone in range(nc + 1):
dzone = (lgi == zone)
if dzone.sum(dtype=int) > ds.size // 2:
continue
min0, min1, max0, max1 = boundingBox(dzone)
ksize = min(max0 - min0, max1 - min1)
subset = ds[max(0, min0 - 4 * ksize):min(shape[0], max0 + 4 * ksize), max(0, min1 - 4 * ksize):min(shape[1], max1 + 4 * ksize)]
while subset.max() > maxt:
subset = ndimage.median_filter(subset, ksize)
ds[max(0, min0 - 4 * ksize):min(shape[0], max0 + 4 * ksize), max(0, min1 - 4 * ksize):min(shape[1], max1 + 4 * ksize)] = subset
fabio.edfimage.edfimage(data=ds).write("removeSaturatedPixel.edf")
return ds
def binning(input_img, binsize):
"""
@param input_img: input ndarray
@param binsize: int or 2-tuple representing the size of the binning
@return: binned input ndarray
"""
inputSize = input_img.shape
outputSize = []
assert(len(inputSize) == 2)
if isinstance(binsize, int):
binsize = (binsize, binsize)
for i, j in zip(inputSize, binsize):
assert(i % j == 0)
outputSize.append(i // j)
if numpy.array(binsize).prod() < 50:
out = numpy.zeros(tuple(outputSize))
for i in xrange(binsize[0]):
for j in xrange(binsize[1]):
out += input_img[i::binsize[0], j::binsize[1]]
else:
temp = input_img.copy()
temp.shape = (outputSize[0], binsize[0], outputSize[1], binsize[1])
out = temp.sum(axis=3).sum(axis=1)
return out
def unBinning(binnedArray, binsize, norm=True):
"""
@param binnedArray: input ndarray
@param binsize: 2-tuple representing the size of the binning
@return: unBinned input ndarray
"""
if isinstance(binsize, int):
binsize = (binsize, binsize)
outputShape = []
for i, j in zip(binnedArray.shape, binsize):
outputShape.append(i * j)
out = numpy.zeros(tuple(outputShape), dtype=binnedArray.dtype)
for i in xrange(binsize[0]):
for j in xrange(binsize[1]):
out[i::binsize[0], j::binsize[1]] += binnedArray
if norm:
out /= binsize[0] * binsize[1]
return out
def shiftFFT(input_img, shift_val, method="fftw"):
"""
Do shift using FFTs
Shift an array like scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") but faster
@param input_img: 2d numpy array
@param shift_val: 2-tuple of float
@return: shifted image
"""
# TODO: understand why this is needed !
if "has_fftw3" not in dir():
has_fftw3 = ("fftw3" in sys.modules)
if "has_fftw3" and ("fftw3" not in dir()):
fftw3 = sys.modules.get("fftw3")
else:
fftw3 = None
# print fftw3
d0, d1 = input_img.shape
v0, v1 = shift_val
f0 = numpy.fft.ifftshift(numpy.arange(-d0 // 2, d0 // 2))
f1 = numpy.fft.ifftshift(numpy.arange(-d1 // 2, d1 // 2))
m1, m0 = numpy.meshgrid(f1, f0)
e0 = numpy.exp(-2j * numpy.pi * v0 * m0 / float(d0))
e1 = numpy.exp(-2j * numpy.pi * v1 * m1 / float(d1))
e = e0 * e1
if method.startswith("fftw") and (fftw3 is not None):
input_ = numpy.zeros((d0, d1), dtype=complex)
output = numpy.zeros((d0, d1), dtype=complex)
with sem:
fft = fftw3.Plan(input_, output, direction='forward', flags=['estimate'])
ifft = fftw3.Plan(output, input_, direction='backward', flags=['estimate'])
input_[:, :] = input_img.astype(complex)
fft()
output *= e
ifft()
out = input_ / input_.size
else:
out = numpy.fft.ifft2(numpy.fft.fft2(input_img) * e)
return abs(out)
def maximum_position(img):
"""
Same as scipy.ndimage.measurements.maximum_position:
Find the position of the maximum of the values of the array.
@param img: 2-D image
@return: 2-tuple of int with the position of the maximum
"""
maxarg = numpy.argmax(img)
_, s1 = img.shape
return (maxarg // s1, maxarg % s1)
def center_of_mass(img):
"""
Calculate the center of mass of of the array.
Like scipy.ndimage.measurements.center_of_mass
@param img: 2-D array
@return: 2-tuple of float with the center of mass
"""
d0, d1 = img.shape
a0, a1 = numpy.ogrid[:d0, :d1]
img = img.astype("float64")
img /= img.sum()
return ((a0 * img).sum(), (a1 * img).sum())
def measure_offset(img1, img2, method="numpy", withLog=False, withCorr=False):
"""
Measure the actual offset between 2 images
@param img1: ndarray, first image
@param img2: ndarray, second image, same shape as img1
@param withLog: shall we return logs as well ? boolean
@return: tuple of floats with the offsets
"""
method = str(method)
################################################################################
# Start convolutions
################################################################################
shape = img1.shape
logs = []
assert img2.shape == shape
t0 = time.time()
if method[:4] == "fftw" and (fftw3 is not None):
input_ = numpy.zeros(shape, dtype=complex)
output = numpy.zeros(shape, dtype=complex)
with sem:
fft = fftw3.Plan(input_, output, direction='forward', flags=['measure'])
ifft = fftw3.Plan(output, input_, direction='backward', flags=['measure'])
input_[:, :] = img2.astype(complex)
fft()
temp = output.conjugate()
input_[:, :] = img1.astype(complex)
fft()
output *= temp
ifft()
res = input_.real / input_.size
# elif method[:4] == "cuda" and (cu_fft is not None):
# with sem:
# cuda_correlate = CudaCorrelate(shape)
# res = cuda_correlate.correlate(img1, img2)
else: # use numpy fftpack
i1f = numpy.fft.fft2(img1)
i2f = numpy.fft.fft2(img2)
res = numpy.fft.ifft2(i1f * i2f.conjugate()).real
t1 = time.time()
################################################################################
# END of convolutions
################################################################################
offset1 = maximum_position(res)
res = shift(res, (shape[0] // 2 , shape[1] // 2))
mean = res.mean(dtype="float64")
maxi = res.max()
std = res.std(dtype="float64")
SN = (maxi - mean) / std
new = numpy.maximum(numpy.zeros(shape), res - numpy.ones(shape) * (mean + std * SN * 0.9))
com2 = center_of_mass(new)
logs.append("MeasureOffset: fine result of the centered image: %s %s " % com2)
offset2 = ((com2[0] - shape[0] // 2) % shape[0] , (com2[1] - shape[1] // 2) % shape[1])
delta0 = (offset2[0] - offset1[0]) % shape[0]
delta1 = (offset2[1] - offset1[1]) % shape[1]
if delta0 > shape[0] // 2:
delta0 -= shape[0]
if delta1 > shape[1] // 2:
delta1 -= shape[1]
if (abs(delta0) > 2) or (abs(delta1) > 2):
logs.append("MeasureOffset: Raw offset is %s and refined is %s. Please investigate !" % (offset1, offset2))
listOffset = list(offset2)
if listOffset[0] > shape[0] // 2:
listOffset[0] -= shape[0]
if listOffset[1] > shape[1] // 2:
listOffset[1] -= shape[1]
offset = tuple(listOffset)
t2 = time.time()
logs.append("MeasureOffset: fine result: %s %s" % offset)
logs.append("MeasureOffset: execution time: %.3fs with %.3fs for FFTs" % (t2 - t0, t1 - t0))
if withLog:
if withCorr:
return offset, logs, new
else:
return offset, logs
else:
if withCorr:
return offset, new
else:
return offset
def expand_args(args):
"""
Takes an argv and expand it (under Windows, cmd does not convert *.tif into a list of files.
Keeps only valid files (thanks to glob)
@param args: list of files or wilcards
@return: list of actual args
"""
new = []
for afile in args:
if os.path.exists(afile):
new.append(afile)
else:
new += glob.glob(afile)
return new
def _get_data_path(filename):
"""
@param filename: the name of the requested data file.
@type filename: str
Can search root of data directory in:
- Environment variable PYFAI_DATA
- path hard coded into pyFAI.directories.data_dir
- where this file is installed.
In the future ....
This method try to find the requested ui-name following the
xfreedesktop recommendations. First the source directory then
the system locations
For now, just perform a recursive search
"""
# when using bootstrap the file is located under the build directory
# real_filename = os.path.abspath(os.path.join(os.path.dirname(__file__),
# os.path.pardir,
# os.path.pardir,
# os.path.pardir,
# 'data',
# filename))
# if not os.path.exists(real_filename):
resources = [os.environ.get("PYFAI_DATA"), data_dir, os.path.dirname(__file__)]
try:
import xdg.BaseDirectory
resources += xdg.BaseDirectory.load_data_paths("pyFAI")
except ImportError:
pass
for resource in resources:
if not resource:
continue
real_filename = os.path.join(resource, filename)
if os.path.exists(real_filename):
return real_filename
else:
raise RuntimeError("Can not find the [%s] resource, "
" something went wrong !!!" % (real_filename,))
def get_ui_file(filename):
return _get_data_path(os.path.join("gui", filename))
# return _get_data_path(filename)
def get_cl_file(filename):
# return _get_data_path(os.path.join("openCL", filename))
return _get_data_path(filename)
def concatenate_cl_kernel(filenames):
"""
@param filenames: filenames containing the kernels
@type kernel@: list of str which can be filename of kernel as a string.
this method concatenates all the kernel from the list
"""
kernel = ""
for filename in filenames:
with open(get_cl_file(filename), "r") as f:
kernel += f.read()
return kernel
def deg2rad(dd):
"""
Convert degrees to radian in the range -pi->pi
@param dd: angle in degrees
Nota: depending on the platform it could be 0<2pi
A branch is cheaper than a trigo operation
"""
while dd > 180.0:
dd -= 360.0
while dd <= -180.0:
dd += 360.0
return dd * pi / 180.
class lazy_property(object):
'''
meant to be used for lazy evaluation of an object attribute.
property should represent non-mutable data, as it replaces itself.
'''
def __init__(self, fget):
self.fget = fget
self.func_name = fget.__name__
def __get__(self, obj, cls):
if obj is None:
return None
value = self.fget(obj)
setattr(obj, self.func_name, value)
return value
try:
from numpy import percentile
except ImportError: #backport percentile from numpy 1.6.2
np = numpy
def percentile(a, q, axis=None, out=None, overwrite_input=False):
"""
Compute the qth percentile of the data along the specified axis.
Returns the qth percentile of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
q : float in range of [0,100] (or sequence of floats)
Percentile to compute which must be between 0 and 100 inclusive.
axis : int, optional
Axis along which the percentiles are computed. The default (None)
is to compute the median along a flattened version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a` for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted.
Default is False. Note that, if `overwrite_input` is True and the
input is not already an array, an error will be raised.
Returns
-------
pcntile : ndarray
A new array holding the result (unless `out` is specified, in
which case that array is returned instead). If the input contains
integers, or floats of smaller precision than 64, then the output
data-type is float64. Otherwise, the output data-type is the same
as that of the input.
See Also
--------
mean, median
Notes
-----
Given a vector V of length N, the qth percentile of V is the qth ranked
value in a sorted copy of V. A weighted average of the two nearest
neighbors is used if the normalized ranking does not match q exactly.
The same as the median if ``q=0.5``, the same as the minimum if ``q=0``
and the same as the maximum if ``q=1``.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 0.5, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)
array([ 7., 2.])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.percentile(b, 50, axis=None, overwrite_input=True)
3.5
"""
a = np.asarray(a)
if q == 0:
return a.min(axis=axis, out=out)
elif q == 100:
return a.max(axis=axis, out=out)
if overwrite_input:
if axis is None:
sorted = a.ravel()
sorted.sort()
else:
a.sort(axis=axis)
sorted = a
else:
sorted = np.sort(a, axis=axis)
if axis is None:
axis = 0
return _compute_qth_percentile(sorted, q, axis, out)
# handle sequence of q's without calling sort multiple times
def _compute_qth_percentile(sorted, q, axis, out):
if not np.isscalar(q):
p = [_compute_qth_percentile(sorted, qi, axis, None)
for qi in q]
if out is not None:
out.flat = p
return p
q = q / 100.0
if (q < 0) or (q > 1):
raise ValueError, "percentile must be either in the range [0,100]"
indexer = [slice(None)] * sorted.ndim
Nx = sorted.shape[axis]
index = q * (Nx - 1)
i = int(index)
if i == index:
indexer[axis] = slice(i, i + 1)
weights = np.array(1)
sumval = 1.0
else:
indexer[axis] = slice(i, i + 2)
j = i + 1
weights = np.array([(j - index), (index - i)], float)
wshape = [1] * sorted.ndim
wshape[axis] = 2
weights.shape = wshape
sumval = weights.sum()
# Use add.reduce in both cases to coerce data type as well as
# check and use out array.
return np.add.reduce(sorted[indexer] * weights, axis=axis, out=out) / sumval
def convert_CamelCase(name):
"""
convert a function name in CamelCase into camel_case
"""
import re
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
def readFloatFromKeyboard(text, dictVar):
"""
Read float from the keyboard ....
@param text: string to be displayed
@param dictVar: dict of this type: {1: [set_dist_min],3: [set_dist_min, set_dist_guess, set_dist_max]}
"""
fromkb = raw_input(text).strip()
try:
vals = [float(i) for i in fromkb.split()]
except:
logging.error("Error in parsing values")
else:
found = False
for i in dictVar:
if len(vals) == i:
found = True
for j in range(i):
dictVar[i][j](vals[j])
if not found:
logger.error("You should provide the good number of floats")
|