This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/refinment2D.py is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/kif/pyFAI
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "29/09/2014"
__status__ = "beta"

import logging
import numpy

logger = logging.getLogger("pyFAI.refinment2D")

#from utils import timeit
from pyFAI.azimuthalIntegrator import AzimuthalIntegrator
from PyMca import SGModule


class Refinment2D(object):
    """
    refine the parameters from image itself ...
    (Jerome est-ce que tu peux elaborer un petit peu plus ???)
    """
    def __init__(self, img, ai=None):
        """
        @param img: raw image we are working on
        @type img: ndarray
        @param ai: azimuhal integrator we are working on
        @type ai: pyFAI.azimuthalIntegrator.AzimutalIntegrator
        """
        self.img = img
        if ai is None:
            self.ai = AzimuthalIntegrator()
        else:
            self.ai = ai

    def get_shape(self):
        return self.img.shape
    shape = property(get_shape)

    def reconstruct(self, tth, I):
        """
        Reconstruct a perfect image according to 2th / I given in
        input

        @param tth: 2 theta array
        @type tth: ndarray
        @param I: intensity array
        @type I: ndarray

        @return: a reconstructed image
        @rtype: ndarray
        """
        return numpy.interp(self.ai.twoThetaArray(self.shape), tth, I)

    def diff_tth_X(self, dx=0.1):
        """
        Jerome peux-tu décrire de quoi il retourne ???

        @param dx: ???
        @type: float ???

        @return: ???
        @rtype: ???
        """
        f = self.ai.getFit2D()
        fp = f.copy()
        fm = f.copy()
        fm["centerX"] -= dx / 2.0
        fp["centerX"] += dx / 2.0
        ap = AzimuthalIntegrator()
        am = AzimuthalIntegrator()
        ap.setFit2D(**fp)
        am.setFit2D(**fm)
        dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape))\
            / dx
        tth, I = self.ai.xrpd(self.img, max(self.shape))
        dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1)\
            / (tth[1] - tth[0])
        dImg = self.reconstruct(tth, dI)
        return (dtthX * dImg).sum()

    def diff_tth_tilt(self, dx=0.1):
        """
        idem ici ???

        @param dx: ???
        @type dx: float ???

        @return: ???
        @rtype: ???
        """
        f = self.ai.getFit2D()
        fp = f.copy()
        fm = f.copy()
        fm["tilt"] -= dx / 2.0
        fp["tilt"] += dx / 2.0
        ap = AzimuthalIntegrator()
        am = AzimuthalIntegrator()
        ap.setFit2D(**fp)
        am.setFit2D(**fm)
        dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape))\
            / dx
        tth, I = self.ai.xrpd(self.img, max(self.shape))
        dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1)\
            / (tth[1] - tth[0])
        dImg = self.reconstruct(tth, dI)
        return (dtthX * dImg).sum()

    def diff_Fit2D(self, axis="all", dx=0.1):
        """
        ???

        @param axis: ???
        @type axis: ???
        @param dx: ???
        @type dx: ???

        @return: ???
        @rtype: ???
        """
        tth, I = self.ai.xrpd(self.img, max(self.shape))
        dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1)\
            / (tth[1] - tth[0])
        dImg = self.reconstruct(tth, dI)
        f = self.ai.getFit2D()
        tth2d_ref = self.ai.twoThetaArray(self.shape)  # useless variable ???

        keys = ["centerX", "centerY", "tilt", "tiltPlanRotation"]
        if axis != "all":
            keys = [i for i in keys if i == axis]
        grad = {}
        for key in keys:
            fp = f.copy()
            fp[key] += dx
            ap = AzimuthalIntegrator()
            ap.setFit2D(**fp)
            dtth = (ap.twoThetaArray(self.shape)
                    - self.ai.twoThetaArray(self.shape)) / dx
            grad[key] = (dtth * dImg).sum()
        if axis == "all":
            return grad
        else:
            return grad[axis]

    def scan_centerX(self, width=1.0, points=10):
        """
        ???

        @param width: ???
        @type width: float ???
        @param points: ???
        @type points: int ???

        @return: ???
        @rtype: ???
        """
        f = self.ai.getFit2D()
        out = []
        for x in numpy.linspace(f["centerX"] - width / 2.0,
                                f["centerX"] + width / 2.0,
                                points):
            ax = AzimuthalIntegrator()
            fx = f.copy()
            fx["centerX"] = x
            ax.setFit2D(**fx)
#            print ax
            ref = Refinment2D(self.img, ax)
            res = ref.diff_tth_X()
            print "x= %.3f mean= %e" % (x, res)
            out.append(res)
        return numpy.linspace(f["centerX"] - width / 2.0,
                              f["centerX"] + width / 2.0,
                              points), out

    def scan_tilt(self, width=1.0, points=10):
        """
        ???

        @param width: ???
        @type width: float ???
        @param points: ???
        @type points: int ???

        @return: ???
        @rtype: ???
        """
        f = self.ai.getFit2D()
        out = []
        for x in numpy.linspace(f["tilt"] - width / 2.0,
                                f["tilt"] + width / 2.0,
                                points):
            ax = AzimuthalIntegrator()
            fx = f.copy()
            fx["tilt"] = x
            ax.setFit2D(**fx)
#            print ax
            ref = Refinment2D(self.img, ax)
            res = ref.diff_tth_tilt()
            print "x= %.3f mean= %e" % (x, res)
            out.append(res)
        return numpy.linspace(f["tilt"] - width / 2.0,
                              f["tilt"] + width / 2.0,
                              points), out

    def scan_Fit2D(self, width=1.0, points=10, axis="tilt", dx=0.1):
        """
        ???

        @param width: ???
        @type width: float ???
        @param points: ???
        @type points: int ???
        @param axis: ???
        @type axis: str ???
        @param dx: ???
        @type dx: float ???

        @return: ???
        @rtype: ???
        """
        logger.info("Scanning along axis %s" % axis)
        f = self.ai.getFit2D()
        out = []
        meas_pts = numpy.linspace(f[axis] - width / 2.0,
                                  f[axis] + width / 2.0,
                                  points)
        for x in meas_pts:
            ax = AzimuthalIntegrator()
            fx = f.copy()
            fx[axis] = x
            ax.setFit2D(**fx)
            ref = Refinment2D(self.img, ax)
            res = ref.diff_Fit2D(axis=axis, dx=dx)
            print "x= %.3f mean= %e" % (x, res)
            out.append(res)
        return meas_pts, out