This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/geometryRefinement.py is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/kif/pyFAI
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "29/09/2014"
__status__ = "development"

import os
import tempfile
import subprocess
import logging
import numpy
import types
from math import pi
from . import azimuthalIntegrator
from .calibrant import Calibrant, ALL_CALIBRANTS
AzimuthalIntegrator = azimuthalIntegrator.AzimuthalIntegrator
from scipy.optimize import fmin, leastsq, fmin_slsqp, anneal

if os.name != "nt":
    WindowsError = RuntimeError

logger = logging.getLogger("pyFAI.geometryRefinement")
# logger.setLevel(logging.DEBUG)
ROCA = "/opt/saxs/roca"

####################
# GeometryRefinement
####################


class GeometryRefinement(AzimuthalIntegrator):
    def __init__(self, data, dist=1, poni1=None, poni2=None,
                 rot1=0, rot2=0, rot3=0,
                 pixel1=None, pixel2=None, splineFile=None, detector=None,
                 wavelength=None, calibrant=None):
        """
        @param data: ndarray float64 shape = n, 3
            col0: pos in dim0 (in pixels)
            col1: pos in dim1 (in pixels)
            col2: ring index in calibrant object
        @param dist: guessed sample-detector distance (optional, in m)
        @param poni1: guessed PONI coordinate along the Y axis (optional, in m)
        @param poni2: guessed PONI coordinate along the X axis (optional, in m)
        @param rot1: guessed tilt of the detector around the Y axis (optional, in rad)
        @param rot2: guessed tilt of the detector around the X axis (optional, in rad)
        @param rot3: guessed tilt of the detector around the incoming beam axis (optional, in rad)
        @param pixel1: Pixel size along the vertical direction of the detector (in m), almost mandatory
        @param pixel2: Pixel size along the horizontal direction of the detector (in m), almost mandatory
        @param splineFile: file describing the detector as 2 cubic splines. Replaces pixel1 & pixel2
        @param detector: name of the detector or Detector instance. Replaces splineFile, pixel1 & pixel2
        @param wavelength: wavelength in m (1.54e-10)
        @param calibrant: instance of pyFAI.calibrant.Calibrant containing the d-Spacing 

        """
        self.data = numpy.array(data, dtype=numpy.float64)
        assert self.data.ndim == 2
        assert self.data.shape[1] in [ 3, 4] #3 for non weighted, 4 for weighted refinement
        assert self.data.shape[0]>0

        if (pixel1 is None) and (pixel2 is None) and (splineFile is None) and (detector is None):
            raise RuntimeError("Setting up the geometry refinement without knowing the detector makes little sense")
        AzimuthalIntegrator.__init__(self, dist, 0, 0,
                                     rot1, rot2, rot3,
                                     pixel1, pixel2, splineFile, detector, wavelength=wavelength)

        if calibrant is None:
            self.calibrant = Calibrant()
        else:
            if isinstance(calibrant, Calibrant):
                self.calibrant = calibrant
            elif type(calibrant) in types.StringTypes:
                if calibrant in ALL_CALIBRANTS:
                    self.calibrant = ALL_CALIBRANTS[calibrant]
                else:
                     self.calibrant = Calibrant(filename=calibrant)
            else:
                self.calibrant = Calibrant(calibrant)

        self.calibrant.wavelength = self.wavelength

        if (poni1 is None) or (poni2 is None):
            self.guess_poni()
        else:
            self.poni1 = float(poni1)
            self.poni2 = float(poni2)
        self._dist_min = 0
        self._dist_max = 10
        self._poni1_min = -10000 * self.pixel1
        self._poni1_max = 15000 * self.pixel1
        self._poni2_min = -10000 * self.pixel2
        self._poni2_max = 15000 * self.pixel2
        self._rot1_min = -pi
        self._rot1_max = pi
        self._rot2_min = -pi
        self._rot2_max = pi
        self._rot3_min = -pi
        self._rot3_max = pi
        self._wavelength_min = 1e-15
        self._wavelength_max = 100.e-10


    def guess_poni(self):
        """
        Poni can be guessed by the centroid of the ring with lowest 2Theta
        """

        if len(self.calibrant.dSpacing):
#            logger.warning(self.calibrant.__repr__())s
            tth = self.calc_2th(self.data[:, 2])
        else:  # assume rings are in decreasing dSpacing in the file
            tth = self.data[:, 2]
        asrt = tth.argsort()
        tth = tth[asrt]
        srtdata = self.data[asrt]
        smallRing = srtdata[tth < (tth.min() + 1e-6)]
        smallRing1 = smallRing[:, 0]
        smallRing2 = smallRing[:, 1]
        smallRing_in_m = self.detector.calc_cartesian_positions(smallRing1,
                                                                smallRing2)
        l = len(smallRing)
        self.poni1 = smallRing_in_m[0].sum() / l
        self.poni2 = smallRing_in_m[1].sum() / l

    def set_tolerance(self, value=10):
        """
        Set the tolerance for a refinement of the geometry; in percent of the original value 

        @param value: Tolerance as a percentage

        """
        low = 1.0 - value / 100.
        hi = 1.0 + value / 100.
        self.dist_min = low * self.dist
        self.dist_max = hi * self.dist
        if abs(self.poni1) > (value / 100.) ** 2:
            self.poni1_min = min(low * self.poni1, hi * self.poni1)
            self.poni1_max = max(low * self.poni1, hi * self.poni1)
        else:
            self.poni1_min = -(value / 100.) ** 2
            self.poni1_max = (value / 100.) ** 2
        if abs(self.poni2) > (value / 100.) ** 2:
            self.poni2_min = min(low * self.poni2, hi * self.poni2)
            self.poni2_max = max(low * self.poni2, hi * self.poni2)
        else:
            self.poni2_min = -(value / 100.) ** 2
            self.poni2_max = (value / 100.) ** 2
        if abs(self.rot1) > (value / 100.) ** 2:
            self.rot1_min = min(low * self.rot1, hi * self.rot1)
            self.rot1_max = max(low * self.rot1, hi * self.rot1)
        else:
            self.rot1_min = -(value / 100.) ** 2
            self.rot1_max = (value / 100.) ** 2
        if abs(self.rot2) > (value / 100.) ** 2:
            self.rot2_min = min(low * self.rot2, hi * self.rot2)
            self.rot2_max = max(low * self.rot2, hi * self.rot2)
        else:
            self.rot2_min = -(value / 100.) ** 2
            self.rot2_max = (value / 100.) ** 2
        if abs(self.rot3) > (value / 100.) ** 2:
            self.rot3_min = min(low * self.rot3, hi * self.rot3)
            self.rot3_max = max(low * self.rot3, hi * self.rot3)
        else:
            self.rot3_min = -(value / 100.) ** 2
            self.rot3_max = (value / 100.) ** 2
        self.wavelength_min = low * self.wavelength
        self.wavelength_max = hi * self.wavelength


    def calc_2th(self, rings, wavelength=None):
        """
        @param rings: indices of the rings. starts at 0 and self.dSpacing should be long enough !!!
        @param wavelength: wavelength in meter
        """
        if wavelength is None:
            wavelength = self.wavelength
        rings = numpy.ascontiguousarray(rings, dtype=numpy.int32)
        if wavelength != self.calibrant.wavelength:
            self.calibrant.setWavelength_change2th(wavelength)       
        return numpy.array(self.calibrant.get_2th(), dtype=numpy.float64)[rings]

    def residu1(self, param, d1, d2, rings):
        return self.tth(d1, d2, param) - self.calc_2th(rings, self.wavelength)


    def residu1_wavelength(self, param, d1, d2, rings):
        return self.tth(d1, d2, param) - self.calc_2th(rings, param[6] * 1e-10)


    def residu2(self, param, d1, d2, rings):
        return (self.residu1(param, d1, d2, rings) ** 2).sum()

    def residu2_weighted(self, param, d1, d2, rings, weight):
        return (weight * self.residu1(param, d1, d2, rings) ** 2).sum()

    def residu2_wavelength(self, param, d1, d2, rings):
        return (self.residu1_wavelength(param, d1, d2, rings) ** 2).sum()

    def residu2_wavelength_weighted(self, param, d1, d2, rings, weight):
        return (weight * self.residu1_wavelength(param, d1, d2, rings) ** 2).sum()


    def refine1(self):
        self.param = numpy.array([self._dist, self._poni1, self._poni2,
                                  self._rot1, self._rot2, self._rot3],
                                 dtype="float64")
        newParam, rc = leastsq(self.residu1, self.param,
                               args=(self.data[:, 0],
                                     self.data[:, 1],
                                     self.data[:, 2]))
        oldDeltaSq = self.chi2(tuple(self.param))
        newDeltaSq = self.chi2(tuple(newParam))
        logger.info("Least square retcode=%s %s --> %s",
                    rc, oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - newParam).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s: %s --> %s ",
                        d[i], self.param[i], newParam[i])
            self.param = newParam
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(newParam)
            return newDeltaSq
        else:
            return oldDeltaSq

    def refine2(self, maxiter=1000000, fix=["wavelength"]):
        d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
        param = []
        bounds = []
        for i in d:
            param.append(getattr(self, i))
            if i in fix:
                val = getattr(self, i)
                bounds.append((val, val))
            else:
                bounds.append((getattr(self, "_%s_min" % i), getattr(self, "_%s_max" % i)))
        self.param = numpy.array(param)
        if self.data.shape[-1] == 3:
           pos0 = self.data[:, 0]
           pos1 = self.data[:, 1]
           ring = self.data[:, 2].astype(numpy.int32)
           weight = None
           newParam = fmin_slsqp(self.residu2, self.param, iter=maxiter,
                              args=(pos0, pos1, ring),
                              bounds=bounds,
                              acc=1.0e-12,
                              iprint=(logger.getEffectiveLevel() <= logging.INFO))

        elif self.data.shape[-1] == 4:
           pos0 = self.data[:, 0]
           pos1 = self.data[:, 1]
           ring = self.data[:, 2].astype(numpy.int32)
           weight = self.data[:, 3]
           newParam = fmin_slsqp(self.residu2_weighted, self.param, iter=maxiter,
                              args=(pos0, pos1, ring, weight),
                              bounds=bounds,
                              acc=1.0e-12,
                              iprint=(logger.getEffectiveLevel() <= logging.INFO))
        oldDeltaSq = self.chi2() / self.data.shape[0]
        newDeltaSq = self.chi2(newParam) / self.data.shape[0]
        logger.info("Constrained Least square %s --> %s",
                    oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - newParam).argmax()

            logger.info("maxdelta on %s: %s --> %s ",
                        d[i], self.param[i], newParam[i])
            self.param = newParam
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(newParam)
            return newDeltaSq
        else:
            return oldDeltaSq

    def refine2_wavelength(self, maxiter=1000000, fix=["wavelength"]):
        d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3", "wavelength"]

        self.param = numpy.array([self.dist, self.poni1, self.poni2,
                                  self.rot1, self.rot2, self.rot3, self.wavelength],
                                 dtype="float64")
        param = []
        bounds = []
        for i in d:
            param.append(getattr(self, i))
            if i in fix:
                val = getattr(self, i)
                bounds.append((val, val))
            else:
                bounds.append((getattr(self, "_%s_min" % i), getattr(self, "_%s_max" % i)))
        # wavelength is multiplied to 10^10 to have values in the range 0.1-10: better numerical differentiation
        bounds[-1] = (bounds[-1][0] * 1e10, bounds[-1][1] * 1e10)
        param[-1] = 1e10 * param[-1]
        self.param = numpy.array(param)
        if self.data.shape[-1] == 3:
           pos0 = self.data[:, 0]
           pos1 = self.data[:, 1]
           ring = self.data[:, 2].astype(numpy.int32)
           weight = None
           newParam = fmin_slsqp(self.residu2_wavelength,
                                 self.param, iter=maxiter,
                                 args=(pos0, pos1, ring),
                                 bounds=bounds,
                                 acc=1.0e-12,
                                 iprint=(logger.getEffectiveLevel() <= logging.INFO))

        elif self.data.shape[-1] == 4:
           pos0 = self.data[:, 0]
           pos1 = self.data[:, 1]
           ring = self.data[:, 2].astype(numpy.int32)
           weight = self.data[:, 3]
           newParam = fmin_slsqp(self.residu2_wavelength_weighted,
                                 self.param, iter=maxiter,
                                 args=(pos0, pos1, ring, weight),
                                 bounds=bounds,
                                 acc=1.0e-12,
                                 iprint=(logger.getEffectiveLevel() <= logging.INFO))
        oldDeltaSq = self.chi2_wavelength() / self.data.shape[0]
        newDeltaSq = self.chi2_wavelength(newParam) / self.data.shape[0]
        logger.info("Constrained Least square %s --> %s",
                    oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - newParam).argmax()
            logger.info("maxdelta on %s: %s --> %s ",
                        d[i], self.param[i], newParam[i])
            self.param = newParam
            self.dist, self.poni1, self.poni2, self.rot1, self.rot2, self.rot3 = tuple(newParam[:-1])
            self.wavelength = 1e-10 * newParam[-1]
            return newDeltaSq
        else:
            return oldDeltaSq


    def simplex(self, maxiter=1000000):
        self.param = numpy.array([self.dist, self.poni1, self.poni2,
                                  self.rot1, self.rot2, self.rot3],
                                 dtype="float64")
        newParam = fmin(self.residu2, self.param,
                        args=(self.data[:, 0],
                              self.data[:, 1],
                              self.data[:, 2]),
                        maxiter=maxiter,
                        xtol=1.0e-12)
        oldDeltaSq = self.chi2(tuple(self.param)) / self.data.shape[0]
        newDeltaSq = self.chi2(tuple(newParam)) / self.data.shape[0]
        logger.info("Simplex %s --> %s", oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - newParam).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s : %s --> %s ",
                        d[i], self.param[i], newParam[i])
            self.param = newParam
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(newParam)
            return newDeltaSq
        else:
            return oldDeltaSq

    def anneal(self, maxiter=1000000):
        self.param = [self.dist, self.poni1, self.poni2,
                      self.rot1, self.rot2, self.rot3]
        result = anneal(self.residu2, self.param,
                        args=(self.data[:, 0],
                              self.data[:, 1],
                              self.data[:, 2]),
                        lower=[self._dist_min,
                               self._poni1_min,
                               self._poni2_min,
                               self._rot1_min,
                               self._rot2_min,
                               self._rot3_min],
                        upper=[self._dist_max,
                               self._poni1_max,
                               self._poni2_max,
                               self._rot1_max,
                               self._rot2_max,
                               self._rot3_max],
                        maxiter=maxiter)
        newParam = result[0]
        oldDeltaSq = self.chi2() / self.data.shape[0]
        newDeltaSq = self.chi2(newParam) / self.data.shape[0]
        logger.info("Anneal  %s --> %s", oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - newParam).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s : %s --> %s ",
                        d[i], self.param[i], newParam[i])
            self.param = newParam
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(newParam)
            return newDeltaSq
        else:
            return oldDeltaSq

    def chi2(self, param=None):
        if param is None:
            param = self.param[:]
        return self.residu2(param,
                            self.data[:, 0], self.data[:, 1], self.data[:, 2])

    def chi2_wavelength(self, param=None):
        if param is None:
            param = self.param
            if len(param) == 6:
                param.append(1e10 * self.wavelength)
        return self.residu2_wavelength(param,
                            self.data[:, 0], self.data[:, 1], self.data[:, 2].astype(numpy.int32))


    def roca(self):
        """
        run roca to optimise the parameter set
        """
        tmpf = tempfile.NamedTemporaryFile()
        for line in self.data:
            tmpf.write("%s %s %s %s" % (line[2], line[0], line[1], os.linesep))
        tmpf.flush()
        roca = subprocess.Popen(
            [ROCA, "debug=8", "maxdev=1", "input=" + tmpf.name,
             str(self.pixel1), str(self.pixel2),
             str(self.poni1 / self.pixel1), str(self.poni2 / self.pixel2),
             str(self.dist), str(self.rot1), str(self.rot2), str(self.rot3)],
            stdout=subprocess.PIPE)
        newParam = [self.dist, self.poni1, self.poni2,
                    self.rot1, self.rot2, self.rot3]
        for line in roca.stdout:
            word = line.split()
            if len(word) == 3:
                if word[0] == "cen1":
                    newParam[1] = float(word[1]) * self.pixel1
                if word[0] == "cen2":
                    newParam[2] = float(word[1]) * self.pixel2
                if word[0] == "dis":
                    newParam[0] = float(word[1])
                if word[0] == "rot1":
                    newParam[3] = float(word[1])
                if word[0] == "rot2":
                    newParam[4] = float(word[1])
                if word[0] == "rot3":
                    newParam[5] = float(word[1])
        print("Roca %s --> %s" % (self.chi2() / self.data.shape[0], self.chi2(newParam) / self.data.shape[0]))
        if self.chi2(tuple(newParam)) < self.chi2(tuple(self.param)):
            self.param = newParam
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(newParam)

        tmpf.close()

    def set_dist_max(self, value):
        if isinstance(value, float):
            self._dist_max = value
        else:
            self._dist_max = float(value)
    def get_dist_max(self):
        return self._dist_max
    dist_max = property(get_dist_max, set_dist_max)
    def set_dist_min(self, value):
        if isinstance(value, float):
            self._dist_min = value
        else:
            self._dist_min = float(value)
    def get_dist_min(self):
        return self._dist_min
    dist_min = property(get_dist_min, set_dist_min)


    def set_poni1_min(self, value):
        if isinstance(value, float):
            self._poni1_min = value
        else:
            self._poni1_min = float(value)
    def get_poni1_min(self):
        return self._poni1_min
    poni1_min = property(get_poni1_min, set_poni1_min)
    def set_poni1_max(self, value):
        if isinstance(value, float):
            self._poni1_max = value
        else:
            self._poni1_max = float(value)
    def get_poni1_max(self):
        return self._poni1_max
    poni1_max = property(get_poni1_max, set_poni1_max)

    def set_poni2_min(self, value):
        if isinstance(value, float):
            self._poni2_min = value
        else:
            self._poni2_min = float(value)
    def get_poni2_min(self):
        return self._poni2_min
    poni2_min = property(get_poni2_min, set_poni2_min)
    def set_poni2_max(self, value):
        if isinstance(value, float):
            self._poni2_max = value
        else:
            self._poni2_max = float(value)
    def get_poni2_max(self):
        return self._poni2_max
    poni2_max = property(get_poni2_max, set_poni2_max)

    def set_rot1_min(self, value):
        if isinstance(value, float):
            self._rot1_min = value
        else:
            self._rot1_min = float(value)
    def get_rot1_min(self):
        return self._rot1_min
    rot1_min = property(get_rot1_min, set_rot1_min)
    def set_rot1_max(self, value):
        if isinstance(value, float):
            self._rot1_max = value
        else:
            self._rot1_max = float(value)
    def get_rot1_max(self):
        return self._rot1_max
    rot1_max = property(get_rot1_max, set_rot1_max)

    def set_rot2_min(self, value):
        if isinstance(value, float):
            self._rot2_min = value
        else:
            self._rot2_min = float(value)
    def get_rot2_min(self):
        return self._rot2_min
    rot2_min = property(get_rot2_min, set_rot2_min)
    def set_rot2_max(self, value):
        if isinstance(value, float):
            self._rot2_max = value
        else:
            self._rot2_max = float(value)
    def get_rot2_max(self):
        return self._rot2_max
    rot2_max = property(get_rot2_max, set_rot2_max)

    def set_rot3_min(self, value):
        if isinstance(value, float):
            self._rot3_min = value
        else:
            self._rot3_min = float(value)
    def get_rot3_min(self):
        return self._rot3_min
    rot3_min = property(get_rot3_min, set_rot3_min)
    def set_rot3_max(self, value):
        if isinstance(value, float):
            self._rot3_max = value
        else:
            self._rot3_max = float(value)
    def get_rot3_max(self):
        return self._rot3_max
    rot3_max = property(get_rot3_max, set_rot3_max)

    def set_wavelength_min(self, value):
        if isinstance(value, float):
            self._wavelength_min = value
        else:
            self._wavelength_min = float(value)
    def get_wavelength_min(self):
        return self._wavelength_min
    wavelength_min = property(get_wavelength_min, set_wavelength_min)
    def set_wavelength_max(self, value):
        if isinstance(value, float):
            self._wavelength_max = value
        else:
            self._wavelength_max = float(value)
    def get_wavelength_max(self):
        return self._wavelength_max
    wavelength_max = property(get_wavelength_max, set_wavelength_max)