This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/calibration.py is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/kif
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

"""
pyFAI-calib

A tool for determining the geometry of a detector using a reference sample.

"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "02/10/2014"
__status__ = "production"

import os, sys, time, logging, types, math
try:
    from argparse import ArgumentParser
except ImportError:
    from .argparse import ArgumentParser

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("pyFAI.calibration")
import numpy, scipy.ndimage
from scipy.stats import linregress
import fabio
from .gui_utils import pylab, update_fig, matplotlib
from .detectors import detector_factory, Detector
from .geometryRefinement import GeometryRefinement
from .peak_picker import PeakPicker
from . import units, gui_utils
from .utils import averageImages, measure_offset, expand_args, readFloatFromKeyboard
from .azimuthalIntegrator import AzimuthalIntegrator
from .units import hc
from . import version as PyFAI_VERSION
from . import date as PyFAI_DATE
from .calibrant import Calibrant, ALL_CALIBRANTS
try:
    from ._convolution import gaussian_filter
except ImportError:
    from scipy.ndimage.filters import gaussian_filter

try:
    from . import morphology
except ImportError:
    from scipy.ndimage import morphology
    pyFAI_morphology = False
else:
    pyFAI_morphology = True


def get_detector(detector, datafiles=None):
    """
    Detector factory taking into account the binning knowing the datafiles
    @param detector: string or detector or other junk
    @param datafiles: can be a list of images to be opened and their shape used.
    @return pyFAI.detector.Detector instance
    """
    res = None
    if type(detector) in types.StringTypes:
        try:
            res = detector_factory(detector)
        except RuntimeError:
            print("Not a valid detector: %s" % detector)
            sys.exit(-1)
    elif isinstance(detector, Detector):
        res = detector
    else:
        res = Detector()
    if datafiles and os.path.exists(datafiles[0]):
        shape = fabio.open(datafiles[0]).data.shape
        res.guess_binning(shape)
    return res


class AbstractCalibration(object):

    """
    Everything that is common to Calibration and Recalibration
    """

    win_error = "We are under windows, matplotlib is not able to"\
                         " display too many images without crashing, this"\
                         " is why the window showing the diffraction image"\
                         " is closed"
    HELP = {"help": "Try to get the help of a given action, like 'refine?'. Use done when finished. "
            "Most command are composed of 'action parameter value' like 'set wavelength 1e-10'.",
            "get": "print he value of a parameter",
            "set": "set the value of a parameter to the given value, i.e 'set wavelength 1e-10'",
            'fix': "fixes the value of a parameter so that its value will not be optimized, i.e. 'fix wavelength'",
            'free': "frees the parameter so that the value can be optimized, i.e. 'free wavelength'",
            'bound': "sets the upper and lower bound of a parameter: 'bound dist 0.1 0.2'",
            'bounds': "sets the upper and lower bound of all parameters",
            'refine': "performs a new cycle of refinement",
            'recalib': "extract a new set of rings and re-perform the calibration. One can specify how many rings to extract and the algorithm to use (blob or massif)",
            'done': "finishes the processing, performs an integration and quits",
            'validate': "measures the offset between the calibrated image and the back-projected image",
            'integrate': "perform the azimuthal integration and display results",
            'abort': "quit immediately, discarding any unsaved changes",
            'show': "Just print out the current parameter set",
            'reset': "Reset the geometry to the initial guess (rotation to zero, distance to 0.1m, poni at the center of the image)"
            }
    PARAMETERS = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3", "wavelength"]
    UNITS = {"dist":"meter", "poni1":"meter", "poni2":"meter", "rot1":"radian",
             "rot2":"radian", "rot3":"radian", "wavelength":"meter"}

    def __init__(self, dataFiles=None, darkFiles=None, flatFiles=None, pixelSize=None,
                 splineFile=None, detector=None, wavelength=None, calibrant=None):
        """
        Constructor:

        @param dataFiles: list of filenames containing data images
        @param darkFiles: list of filenames containing dark current images
        @param flatFiles: list of filenames containing flat images
        @param pixelSize: size of the pixel in meter as 2 tuple
        @param splineFile: file containing the distortion of the taper
        @param detector: Detector name or instance
        @param wavelength: radiation wavelength in meter
        @param calibrant: pyFAI.calibrant.Calibrant instance
        """
        self.dataFiles = dataFiles
        self.darkFiles = darkFiles
        self.flatFiles = flatFiles
        self.pointfile = None

        self.detector = get_detector(detector, dataFiles)

        if splineFile and os.path.isfile(splineFile):
            self.detector.splineFile = os.path.abspath(splineFile)
        if pixelSize:
            if "__len__" in dir(pixelSize) and len(pixelSize) >= 2:
                self.detector.pixel1 = float(pixelSize[0])
                self.detector.pixel2 = float(pixelSize[1])
            else:
                self.detector.pixel1 = self.detector.pixel2 = float(pixelSize)

        self.cutBackground = None
        self.outfile = "merged.edf"
        self.peakPicker = None
        self.img = None
        self.ai = AzimuthalIntegrator(dist=1, detector=self.detector)
        self.wavelength = wavelength
        if wavelength:
            self.ai.wavelength = wavelength

        self.data = None
        self.basename = None
        self.geoRef = None
        self.reconstruct = False
        if calibrant:
            if isinstance(calibrant, Calibrant):
                self.calibrant = calibrant
            elif calibrant in ALL_CALIBRANTS:
                self.calibrant = ALL_CALIBRANTS[calibrant]
            elif os.path.isfile(calibrant) and os.path.isfile(calibrant):
                self.calibrant = Calibrant(calibrant)
            else:
                logger.error("Unable to handle such calibrant %s" % calibrant)
                self.calibrant = None
        else:
            self.calibrant = None
        self.mask = None
        self.saturation = 0
        self.fixed = ["wavelength"]  # parameter fixed during optimization
        self.max_rings = None
        self.max_iter = 1000
        self.gui = True
        self.interactive = True
        self.filter = "mean"
        self.basename = None
        self.weighted = False
        self.polarization_factor = None
        self.parser = None
        self.nPt_1D = 1024
        self.nPt_2D_azim = 360
        self.nPt_2D_rad = 400
        self.unit = None
        self.keep = True
        self.check_calib = None
        self.fig3 = self.ax_xrpd_1d = self.ax_xrpd_2d = None

    def __repr__(self):
        lst = ["Calibration object:"]
        if self.dataFiles:
            lst.append("data= " + ", ".join(self.dataFiles))
        else:
            lst.append("data= None")
        if self.darkFiles:
            lst.append("dark= " + ", ".join(self.darkFiles))
        else:
            lst.append("dark= None")
        if self.flatFiles:
            lst.append("flat= " + ", ".join(self.flatFiles))
        else:
            lst.append("flat= None")
        if self.fixed:
            lst.append("fixed=" + ", ".join(self.fixed))
        else:
            lst.append("fixed= None")
        lst.append(self.detector.__repr__())
        return os.linesep.join(lst)

    def configure_parser(self, version="calibration from pyFAI  version %s: %s" % (PyFAI_VERSION, PyFAI_DATE),
                         usage="pyFAI-calib [options] input_image.edf",
                         description=None, epilog=None):
        """Common configuration for parsers
        """
        self.parser = ArgumentParser(usage=usage, description=description, epilog=epilog)
        self.parser.add_argument("-V", "--version", action='version', version=version)
        self.parser.add_argument("args", metavar="FILE", help="List of files to calibrate", nargs='+')
        self.parser.add_argument("-o", "--out", dest="outfile",
                          help="Filename where processed image is saved", metavar="FILE",
                          default="merged.edf")
        self.parser.add_argument("-v", "--verbose",
                          action="store_true", dest="debug", default=False,
                          help="switch to debug/verbose mode")
        self.parser.add_argument("-c", "--calibrant", dest="spacing", metavar="FILE",
                      help="Calibrant name or file containing d-spacing of the reference sample (MANDATORY, case sensitive !)",
                      default=None)
        self.parser.add_argument("-w", "--wavelength", dest="wavelength", type=float,
                      help="wavelength of the X-Ray beam in Angstrom. Mandatory ", default=None)
        self.parser.add_argument("-e", "--energy", dest="energy", type=float,
                      help="energy of the X-Ray beam in keV (hc=%skeV.A)." % hc, default=None)
        self.parser.add_argument("-P", "--polarization", dest="polarization_factor",
                      type=float, default=None,
                      help="polarization factor, from -1 (vertical) to +1 (horizontal),"\
                      " default is None (no correction), synchrotrons are around 0.95")
        self.parser.add_argument("-b", "--background", dest="background",
                      help="Automatic background subtraction if no value are provided",
                      default=None)
        self.parser.add_argument("-d", "--dark", dest="dark",
                      help="list of comma separated dark images to average and subtract", default=None)
        self.parser.add_argument("-f", "--flat", dest="flat",
                      help="list of comma separated flat images to average and divide", default=None)
        self.parser.add_argument("-s", "--spline", dest="spline",
                      help="spline file describing the detector distortion", default=None)
        self.parser.add_argument("-D", "--detector", dest="detector_name",
                      help="Detector name (instead of pixel size+spline)", default=None)
        self.parser.add_argument("-m", "--mask", dest="mask",
                      help="file containing the mask (for image reconstruction)", default=None)
        self.parser.add_argument("-n", "--pt", dest="npt",
                      help="file with datapoints saved. Default: basename.npt", default=None)
        self.parser.add_argument("--filter", dest="filter",
                      help="select the filter, either mean(default), max or median",
                       default="mean")
        self.parser.add_argument("-l", "--distance", dest="distance", type=float,
                      help="sample-detector distance in millimeter. Default: 0.1m", default=None)
        self.parser.add_argument("--poni1", dest="poni1", type=float,
                      help="poni1 coordinate in meter. Default: center of detector", default=None)
        self.parser.add_argument("--poni2", dest="poni2", type=float,
                      help="poni2 coordinate in meter. Default: center of detector", default=None)
        self.parser.add_argument("--rot1", dest="rot1", type=float,
                      help="rot1 in radians. default: 0", default=None)
        self.parser.add_argument("--rot2", dest="rot2", type=float,
                      help="rot2 in radians. default: 0", default=None)
        self.parser.add_argument("--rot3", dest="rot3", type=float,
                      help="rot3 in radians. default: 0", default=None)

        self.parser.add_argument("--fix-dist", dest="fix_dist",
                      help="fix the distance parameter", default=None, action="store_true")
        self.parser.add_argument("--free-dist", dest="fix_dist",
                      help="free the distance parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-poni1", dest="fix_poni1",
                      help="fix the poni1 parameter", default=None, action="store_true")
        self.parser.add_argument("--free-poni1", dest="fix_poni1",
                      help="free the poni1 parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-poni2", dest="fix_poni2",
                      help="fix the poni2 parameter", default=None, action="store_true")
        self.parser.add_argument("--free-poni2", dest="fix_poni2",
                      help="free the poni2 parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-rot1", dest="fix_rot1",
                      help="fix the rot1 parameter", default=None, action="store_true")
        self.parser.add_argument("--free-rot1", dest="fix_rot1",
                      help="free the rot1 parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-rot2", dest="fix_rot2",
                      help="fix the rot2 parameter", default=None, action="store_true")
        self.parser.add_argument("--free-rot2", dest="fix_rot2",
                      help="free the rot2 parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-rot3", dest="fix_rot3",
                      help="fix the rot3 parameter", default=None, action="store_true")
        self.parser.add_argument("--free-rot3", dest="fix_rot3",
                      help="free the rot3 parameter. Default: Activated", default=None, action="store_false")

        self.parser.add_argument("--fix-wavelength", dest="fix_wavelength",
                      help="fix the wavelength parameter. Default: Activated", default=True, action="store_true")
        self.parser.add_argument("--free-wavelength", dest="fix_wavelength",
                      help="free the wavelength parameter. Default: Deactivated ", default=True, action="store_false")

        self.parser.add_argument("--saturation", dest="saturation",
                      help="consider all pixel>max*(1-saturation) as saturated and "\
                      "reconstruct them, default: 0 (deactivated)",
                      default=0, type=float)
        self.parser.add_argument("--weighted", dest="weighted",
                      help="weight fit by intensity, by default not.",
                       default=False, action="store_true")
        self.parser.add_argument("--npt", dest="nPt_1D",
                      help="Number of point in 1D integrated pattern, Default: 1024", type=int,
                      default=1024)
        self.parser.add_argument("--npt-azim", dest="nPt_2D_azim",
                      help="Number of azimuthal sectors in 2D integrated images. Default: 360", type=int,
                      default=360)
        self.parser.add_argument("--npt-rad", dest="nPt_2D_rad",
                      help="Number of radial bins in 2D integrated images. Default: 400", type=int,
                      default=400)
        self.parser.add_argument("--unit", dest="unit",
                      help="Valid units for radial range: 2th_deg, 2th_rad, q_nm^-1,"\
                      " q_A^-1, r_mm. Default: 2th_deg", type=str, default="2th_deg")
        self.parser.add_argument("--no-gui", dest="gui",
                      help="force the program to run without a Graphical interface",
                      default=True, action="store_false")
        self.parser.add_argument("--no-interactive", dest="interactive",
                      help="force the program to run and exit without prompting"\
                      " for refinements", default=True, action="store_false")


    def analyse_options(self, options=None, args=None):
        """
        Analyse options and arguments

        @return: option,arguments
        """
        if (options is None) and  (args is None):
            options = self.parser.parse_args()
            args = options.args
        if options.debug:
            logger.setLevel(logging.DEBUG)
        self.outfile = options.outfile
        if options.dark:
            self.darkFiles = [f for f in options.dark.split(",") if os.path.isfile(f)]
            if not self.darkFiles:  #empty container !!!
                logger.error("No dark file exists !!!")
                self.darkFiles = None
        if options.flat:
            self.flatFiles = [f for f in options.flat.split(",") if os.path.isfile(f)]
            if not self.flatFiles:  #empty container !!!
                logger.error("No flat file exists !!!")
                self.flatFiles = None


        if options.detector_name:
            self.detector = get_detector(options.detector_name, args)
            self.ai.detector = self.detector
        if options.spline:
            if "Pilatus" in self.detector.name:
                self.detector.set_splineFile(options.spline)  # is as 2-tuple of path
            elif os.path.isfile(options.spline):
                self.detector.set_splineFile(os.path.abspath(options.spline))
            else:
                logger.error("Unknown spline file %s" % (options.spline))

        if options.mask and os.path.isfile(options.mask):
            self.mask = (fabio.open(options.mask).data != 0)
        else:  # Use default mask provided by detector
            self.mask = self.detector.mask


        self.pointfile = options.npt
        if options.spacing:
            if options.spacing in ALL_CALIBRANTS:
                self.calibrant = ALL_CALIBRANTS[options.spacing]
            elif os.path.isfile(options.spacing):
                self.calibrant = Calibrant(options.spacing)
            else:
                logger.error("No such Calibrant / d-Spacing file: %s" % options.spacing)

        if self.calibrant is None:
            self.read_dSpacingFile(True)

        if options.wavelength:
            self.ai.wavelength = self.wavelength = 1e-10 * options.wavelength
        elif options.energy:
            self.ai.wavelength = self.wavelength = 1e-10 * hc / options.energy
#        else:
            # This should be read from the poni. It it is missing; it is called in preprocess.
#            self.read_wavelength()
#            pass
        if options.distance:
            self.ai.dist = 1e-3 * options.distance
        if options.poni1 is not None:
            self.ai.poni1 = options.poni1
        if options.poni2 is not None:
            self.ai.poni2 = options.poni2
        if options.rot1 is not None:
            self.ai.rot1 = options.rot1
        if options.rot2 is not None:
            self.ai.rot2 = options.rot2
        if options.rot3 is not None:
            self.ai.rot3 = options.rot3
        self.dataFiles = expand_args(args)
        if not self.dataFiles:
            raise RuntimeError("Please provide some calibration images ... "
                               "if you want to analyze them. Try also the "
                               "--help option to see all options!")
        self.fixed = []
        if options.fix_dist:
            self.fixed.append("dist")
        if options.fix_poni1:
            self.fixed.append("poni1")
        if options.fix_poni2:
            self.fixed.append("poni2")
        if options.fix_rot1:
            self.fixed.append("rot1")
        if options.fix_rot2:
            self.fixed.append("rot2")
        if options.fix_rot3:
            self.fixed.append("rot3")
        if options.fix_wavelength:
            self.fixed.append("wavelength")
        self.saturation = options.saturation

        self.gui = options.gui
        self.interactive = options.interactive
        self.filter = options.filter
        self.weighted = options.weighted
        self.polarization_factor = options.polarization_factor
        self.detector = self.ai.detector
        self.nPt_1D = options.nPt_1D
        self.nPt_2D_azim = options.nPt_2D_azim
        self.nPt_2D_rad = options.nPt_2D_rad
        self.unit = units.to_unit(options.unit)
        if options.background is not None:
            try:
                self.cutBackground = float(options.background)
            except Exception:
                self.cutBackground = True

        return options, args

    def get_pixelSize(self, ans):
        """convert a comma separated sting into pixel size"""
        sp = ans.split(",")
        if len(sp) >= 2:
            try:
                pixelSizeXY = [float(i) * 1e-6 for i in sp[:2]]
            except Exception:
                logger.error("error in reading pixel size_2")
                return
        elif len(sp) == 1:
            px = sp[0]
            try:
                pixelSizeXY = [float(px) * 1e-6, float(px) * 1e-6]
            except Exception:
                logger.error("error in reading pixel size_1")
                return
        else:
            logger.error("error in reading pixel size_0")
            return
        self.detector.pixel1 = pixelSizeXY[1]
        self.detector.pixel2 = pixelSizeXY[0]

    def read_pixelsSize(self):
        """Read the pixel size from prompt if not available"""
        if (self.detector.pixel1 is None) and (self.detector.splineFile is None):
            pixelSize = [15, 15]
            ans = raw_input("Please enter the pixel size (in micron, comma separated X,Y "\
                            " i.e. %.2e,%.2e) or a spline file: " % tuple(pixelSize)).strip()
            if os.path.isfile(ans):
                self.detector.splineFile = ans
            else:
                self.get_pixelSize(ans)

    def read_dSpacingFile(self, verbose=True):
        """Read the name of the calibrant / file with d-spacing"""
        if (self.calibrant is None):
            comments = ["pyFAI calib has changed !!!",
                        "Instead of entering the 2theta value, which was tedious,"
                        "the program takes a calibrant name or a d-spacing file in input "
                        "(just a serie of number representing the inter-planar "
                        "distance in Angstrom)",
                        "and an associated wavelength",
                        "You will be asked to enter the ring number,"
                        " which is usually a simpler than the 2theta value."]
            if verbose:
                print(os.linesep.join(comments))
            valid = False
            while valid:
                ans = raw_input("Please enter the calibrant name or the file"
                                " containing the d-spacing:\t").strip()
                if ans in ALL_CALIBRANTS:
                    self.calibrant = ALL_CALIBRANTS[ans]
                    valid = True
                elif os.path.isfile(ans):
                    self.calibrant = Calibrant(ans)
                    valid = True

    def read_wavelength(self):
        """Read the wavelength"""
        while not self.wavelength:
            ans = raw_input("Please enter wavelength in Angstrom:\t").strip()
            try:
                self.wavelength = self.ai.wavelength = 1e-10 * float(ans)
            except Exception:
                self.wavelength = None

    def preprocess(self):
        """
        Common part:
        do dark, flat correction thresholding, ...
        and read missing data from keyboard if needed
        """
        # GF: self.saturation ignored if none of the other options active...
        if len(self.dataFiles) > 1 or self.cutBackground or self.darkFiles or self.flatFiles:
            self.outfile = averageImages(self.dataFiles, self.outfile,
                                         threshold=self.saturation, minimum=self.cutBackground,
                                         darks=self.darkFiles, flats=self.flatFiles,
                                         filter_=self.filter)
        else:
            self.outfile = self.dataFiles[0]

        self.basename = os.path.splitext(self.outfile)[0]
        if isinstance(self, Recalibration):
            self.keep = False
            self.pointfile = None
        else:
            self.pointfile = self.basename + ".npt"
        if self.wavelength is None:
            self.wavelength = self.ai.wavelength

        self.peakPicker = PeakPicker(self.outfile, reconst=self.reconstruct, mask=self.mask,
                                     pointfile=self.pointfile, calibrant=self.calibrant,
                                     wavelength=self.ai.wavelength)
        if not self.keep:
            self.peakPicker.points.reset()
            if not self.peakPicker.points.calibrant.wavelength:
                self.peakPicker.points.calibrant.wavelength = self.ai.wavelength
            elif self.ai.wavelength != self.peakPicker.points.calibrant.wavelength:
                self.peakPicker.points.calibrant.setWavelength_change2th(self.ai.wavelength)
        if not self.peakPicker.points.calibrant.dSpacing:
            wl = self.peakPicker.points.calibrant.wavelength
            self.read_dSpacingFile()
            if wl:
                self.peakPicker.points.calibrant.wavelength = wl
        if not self.peakPicker.points.calibrant.wavelength:
            self.read_wavelength()
            self.peakPicker.points.calibrant.wavelength = self.wavelength

    def extract_cpt(self, method="massif"):
        """
        Performs an automatic keypoint extraction:
        Can be used in recalib or in calib after a first calibration has been performed
        """
        logger.info("in extract_cpt with method %s" % method)
        assert self.ai
        assert self.calibrant
        assert self.peakPicker
        self.peakPicker.reset()
        self.peakPicker.init(method, False)
        if self.geoRef:
            self.ai.setPyFAI(**self.geoRef.getPyFAI())
        tth = numpy.array([ i for i in self.calibrant.get_2th() if i is not None])
        tth = numpy.unique(tth)
        tth_min = numpy.zeros_like(tth)
        tth_max = numpy.zeros_like(tth)
        delta = (tth[1:] - tth[:-1]) / 4.0
        tth_max[:-1] = delta
        tth_max[-1] = delta[-1]
        tth_min[1:] = -delta
        tth_max[0] = -delta[0]
        tth_max += tth
        tth_min += tth

        if self.geoRef:
            ary = self.geoRef.get_ttha()
            if (ary is not None) and (ary.shape == self.peakPicker.data.shape):
                ttha = ary
            else:
                ttha = self.geoRef.twoThetaArray(self.peakPicker.data.shape)
        else:
            ttha = self.ai.twoThetaArray(self.peakPicker.data.shape)
        rings = 0
        self.peakPicker.sync_init()
        if self.max_rings is None:
            self.max_rings = tth.size
        for i in range(tth.size):
            if rings >= self.max_rings:
                break
            mask = numpy.logical_and(ttha >= tth_min[i], ttha < tth_max[i])
            if self.mask is not None:
                mask = numpy.logical_and(mask, numpy.logical_not(self.mask))
            size = mask.sum(dtype=int)
            if (size > 0):
                rings += 1
                self.peakPicker.massif_contour(mask)
                if self.gui:
                    update_fig(self.peakPicker.fig)
                sub_data = self.peakPicker.data.ravel()[numpy.where(mask.ravel())]
                mean = sub_data.mean(dtype=numpy.float64)
                std = sub_data.std(dtype=numpy.float64)
                upper_limit = mean + std
                mask2 = numpy.logical_and(self.peakPicker.data > upper_limit, mask)
                size2 = mask2.sum(dtype=int)
                if size2 < 1000:
                    upper_limit = mean
                    mask2 = numpy.logical_and(self.peakPicker.data > upper_limit, mask)
                    size2 = mask2.sum()
                keep = int(numpy.ceil(numpy.sqrt(size2)))

                logger.info("Extracting datapoint for ring %s (2theta = %.2f deg); "\
                            "searching for %i pts out of %i with I>%.1f" %
                            (i, numpy.degrees(tth[i]), keep, size2, upper_limit))

                res = self.peakPicker.peaks_from_area(mask2, Imin=upper_limit, keep=keep, method=method, ring=i)


        self.peakPicker.points.save(self.basename + ".npt")
        if self.weighted:
            self.data = self.peakPicker.points.getWeightedList(self.peakPicker.data)
        else:
            self.data = self.peakPicker.points.getList()


    def refine(self):
        """
        Contains the common geometry refinement part
        """
        if os.name == "nt" and self.peakPicker is not None:
            logging.info(self.win_error)
            self.peakPicker.closeGUI()
        print("Before refinement, the geometry is:")
        print(self.geoRef)
        previous = sys.maxint
        finished = False
        fig2 = None
        while not finished:
            count = 0
            if "wavelength" in self.fixed:
#                print self.geoRef.calibrant
                while (previous > self.geoRef.chi2()) and (count < self.max_iter):
                    if (count == 0):
                        previous = sys.maxint
                    else:
                        previous = self.geoRef.chi2()
                    self.geoRef.refine2(1000000, fix=self.fixed)
                    print(self.geoRef)
                    count += 1
            else:
                while previous > self.geoRef.chi2_wavelength() and (count < self.max_iter):
                    if (count == 0):
                        previous = sys.maxint
                    else:
                        previous = self.geoRef.chi2()
                    self.geoRef.refine2_wavelength(1000000, fix=self.fixed)
                    print(self.geoRef)
                    count += 1
                self.peakPicker.points.setWavelength_change2th(self.geoRef.wavelength)
            self.geoRef.save(self.basename + ".poni")
            self.geoRef.del_ttha()
            self.geoRef.del_dssa()
            self.geoRef.del_chia()
            tth = self.geoRef.twoThetaArray(self.peakPicker.shape)
            dsa = self.geoRef.solidAngleArray(self.peakPicker.shape)
#            self.geoRef.chiArray(self.peakPicker.shape)
#            self.geoRef.cornerArray(self.peakPicker.shape)
            if os.name == "nt":
                logger.info(self.win_error)
            else:
                if self.gui:
                    self.peakPicker.contour(tth)
                    if self.interactive:
                        if fig2 is None:
                            fig2 = pylab.plt.figure()
                            sp = fig2.add_subplot(111)
                            im = sp.imshow(dsa, origin="lower")
                            cbar = fig2.colorbar(im)  # Add color bar
                            sp.set_title("Pixels solid-angle (relative to PONI)")
                        else:
                            im.set_array(dsa)
                            im.autoscale()

                        fig2.show()
                        update_fig(fig2)

            if self.interactive:
                finished = self.prompt()
            else:
                finished = True
            if not finished:
                previous = sys.maxint

    def prompt(self):
        """
        prompt for commands to guide the calibration process

        @return: True when the user is happy with what he has, False to request another refinement
        """

        while True:
            help = False
            print("Fixed: " + ", ".join(self.fixed))
            ans = raw_input("Modify parameters (or ? for help)?\t ").strip().lower()
            if "?" in ans:
                help = True
            if not ans:
                print("'done' to continue")
                continue
            words = ans.split()
            action = words[0]
            if action in [ "help", "?"]:
                help == True
            if help:
                for what in self.HELP.keys():
                    if action.startswith(what):
                        print("Help on %s" % what)
                        print(self.HELP[what])
                        break
                else:
                    print("Help on commands")
                    print(self.HELP["help"])
                    print("Valid actions: " + ", ".join(self.HELP.keys()))
                    print("Valid parameters: " + ", ".join(self.PARAMETERS))
            elif action == "get": #get wavelength
                if (len(words) == 2) and  words[1] in self.PARAMETERS:
                    param = words[1]
                    print("Value of parameter %s: %s %s" % (param, self.geoRef.__getattribute__(param), self.UNITS[param]))
                else:
                    print(self.HELP[action])

            elif action == "set": #set wavelength 1e-10
                if (len(words) == 3) and  words[1] in self.PARAMETERS:
                    param = words[1]
                    try:
                        value = float(words[2])
                    except:
                        logger.warning("invalid value")
                    else:
                        setattr(self.geoRef, param, value)
                else:
                    print(self.HELP[action])
            elif action == "fix": #fix wavelength
                if (len(words) == 2) and  (words[1] in self.PARAMETERS) and (words[1] not in self.fixed):
                    param = words[1]
                    print("Value of parameter %s: %s %s" % (param, self.geoRef.__getattribute__(param), self.UNITS[param]))
                    self.fixed.append(param)
                else:
                    print(self.HELP[action])
            elif action == "free": #free wavelength
                if (len(words) == 2) and  (words[1] in self.PARAMETERS) and (words[1] in self.fixed):
                    param = words[1]
                    print("Value of parameter %s: %s %s" % (param, self.geoRef.__getattribute__(param), self.UNITS[param]))
                    self.fixed.remove(param)
            elif action == "recalib":
                max_rings = None
#                 method = "blob"
                if len(words) >= 2:
                    try:
                       max_rings = int(words[1])
                    except Exception:
                        logger.warning("specify the number of rings to extract")
                        max_rings = None
                    else:
                        self.max_rings = max_rings
                else:
                    self.max_rings = None
                if len(words) == 3 and words[2] == "massif":
                    self.extract_cpt("massif")
                else:
                    self.extract_cpt("blob")
                self.geoRef.data = numpy.array(self.data, dtype=numpy.float64)
                return False
            elif action == "bound": #bound dist
                if len(words) >= 2 and  words[1] in self.PARAMETERS:
                    param = words[1]
                    if len(words) == 2:
                        readFloatFromKeyboard("Enter %s in %s " % (param, self.UNITS[param]) +
                             "(or %s_min[%.3f] %s[%.3f] %s_max[%.3f]):\t " % (
                              param, self.geoRef.__getattribute__("get_%s_min" % param)(),
                              param, self.geoRef.__getattribute__("get_%s" % param)(),
                              param, self.geoRef.__getattribute__("get_%s_max" % param)()),
                             {1:[self.geoRef.__getattribute__("set_%s" % param)],
                              2:[self.geoRef.__getattribute__("set_%s_min" % param),
                                 self.geoRef.__getattribute__("set_%s_max" % param)],
                              3:[self.geoRef.__getattribute__("set_%s_min" % param),
                                 self.geoRef.__getattribute__("set_%s" % param),
                                 self.geoRef.__getattribute__("set_%s_max" % param)]})
                    elif len(words) == 3:
                        try:
                            value = float(words[2])
                        except:
                            logger.warning("invalid value")
                        else:
                            self.geoRef.__getattribute__("set_%s" % param)(value)
                    elif len(words) == 4:
                        try:
                            value_min = float(words[2])
                            value_max = float(words[3])
                        except:
                            logger.warning("invalid value")
                        else:
                            self.geoRef.__getattribute__("set_%s_min" % param)(value_min)
                            self.geoRef.__getattribute__("set_%s_max" % param)(value_max)
                    elif len(words) == 5:
                        try:
                            value_min = float(words[2])
                            value = float(words[3])
                            value_max = float(words[4])
                        except:
                            logger.warning("invalid value")
                        else:
                            self.geoRef.__getattribute__("set_%s_min" % param)(value_min)
                            self.geoRef.__getattribute__("set_%s" % param)(value)
                            self.geoRef.__getattribute__("set_%s_max" % param)(value_max)
                    else:
                        print(self.HELP[action])
                else:
                    print(self.HELP[action])
            elif action == "bounds":
                readFloatFromKeyboard("Enter Distance in meter "
                             "(or dist_min[%.3f] dist[%.3f] dist_max[%.3f]):\t " %
                             (self.geoRef.dist_min, self.geoRef.dist, self.geoRef.dist_max),
                             {1:[self.geoRef.set_dist], 2:[ self.geoRef.set_dist_min, self.geoRef.set_dist_max],
                              3:[ self.geoRef.set_dist_min, self.geoRef.set_dist, self.geoRef.set_dist_max]})
                readFloatFromKeyboard("Enter Poni1 in meter "
                              "(or poni1_min[%.3f] poni1[%.3f] poni1_max[%.3f]):\t " %
                              (self.geoRef.poni1_min, self.geoRef.poni1, self.geoRef.poni1_max),
                               {1:[self.geoRef.set_poni1], 2:[ self.geoRef.set_poni1_min, self.geoRef.set_poni1_max],
                                3:[ self.geoRef.set_poni1_min, self.geoRef.set_poni1, self.geoRef.set_poni1_max]})
                readFloatFromKeyboard("Enter Poni2 in meter "
                              "(or poni2_min[%.3f] poni2[%.3f] poni2_max[%.3f]):\t " %
                              (self.geoRef.poni2_min, self.geoRef.poni2, self.geoRef.poni2_max),
                              {1:[self.geoRef.set_poni2], 2:[ self.geoRef.set_poni2_min, self.geoRef.set_poni2_max],
                               3:[ self.geoRef.set_poni2_min, self.geoRef.set_poni2, self.geoRef.set_poni2_max]})
                readFloatFromKeyboard("Enter Rot1 in rad "
                              "(or rot1_min[%.3f] rot1[%.3f] rot1_max[%.3f]):\t " %
                              (self.geoRef.rot1_min, self.geoRef.rot1, self.geoRef.rot1_max),
                              {1:[self.geoRef.set_rot1], 2:[ self.geoRef.set_rot1_min, self.geoRef.set_rot1_max],
                               3:[ self.geoRef.set_rot1_min, self.geoRef.set_rot1, self.geoRef.set_rot1_max]})
                readFloatFromKeyboard("Enter Rot2 in rad "
                              "(or rot2_min[%.3f] rot2[%.3f] rot2_max[%.3f]):\t " %
                              (self.geoRef.rot2_min, self.geoRef.rot2, self.geoRef.rot2_max),
                              {1:[self.geoRef.set_rot2], 2:[ self.geoRef.set_rot2_min, self.geoRef.set_rot2_max],
                               3:[ self.geoRef.set_rot2_min, self.geoRef.set_rot2, self.geoRef.set_rot2_max]})
                readFloatFromKeyboard("Enter Rot3 in rad "
                              "(or rot3_min[%.3f] rot3[%.3f] rot3_max[%.3f]):\t " %
                              (self.geoRef.rot3_min, self.geoRef.rot3, self.geoRef.rot3_max),
                              {1:[self.geoRef.set_rot3], 2:[ self.geoRef.set_rot3_min, self.geoRef.set_rot3_max],
                               3:[ self.geoRef.set_rot3_min, self.geoRef.set_rot3, self.geoRef.set_rot3_max]})
            elif action == "done":
                self.postProcess()
                return True
            elif action == "quit":
                return True
            elif action == "refine":
                return False
            elif action == "fit":
                return False
            elif action == "validate":
                self.validate_calibration()
            elif action == "integrate":
                self.postProcess()
            elif action == "abort":
                sys.exit()
            elif action == "show":
                print("The current parameter set is:")
                print(self.geoRef)
            elif action == "reset":
                self.ai.dist = 0.1
                self.ai.poni1 = self.detector.pixel1 * (self.peakPicker.shape[0] / 2.)
                self.ai.poni2 = self.detector.pixel2 * (self.peakPicker.shape[1] / 2.)
                self.ai.rot1 = 0.0
                self.ai.rot2 = 0.0
                self.ai.rot3 = 0.0

                self.geoRef.set_dist_min(0)
                self.geoRef.set_dist_max(100)
                self.geoRef.set_dist(self.ai.dist)

                self.geoRef.set_poni1_min(-10.0 * self.ai.poni1)
                self.geoRef.set_poni1_max(10.0 * self.ai.poni1)
                self.geoRef.set_poni1(self.ai.poni1)

                self.geoRef.set_poni2_min(-10.0 * self.ai.poni2)
                self.geoRef.set_poni2_max(10.0 * self.ai.poni2)
                self.geoRef.set_poni2(self.ai.poni2)

                self.geoRef.set_rot1_min(-math.pi)
                self.geoRef.set_rot1_max(math.pi)
                self.geoRef.set_rot1(self.ai.rot1)

                self.geoRef.set_rot2_min(-math.pi)
                self.geoRef.set_rot2_max(math.pi)
                self.geoRef.set_rot2(self.ai.rot2)

                self.geoRef.set_rot3_min(-math.pi)
                self.geoRef.set_rot3_max(math.pi)
                self.geoRef.set_rot3(self.ai.rot3)


            else:
                logger.warning("Unrecognized action: %s, type 'quit' to leave " % action)

    def postProcess(self):
        """
        Common part: shows the result of the azimuthal integration in 1D and 2D
        """
        if self.geoRef is None:
            self.refine()
        if "wavelength" not in self.fixed:
            self.peakPicker.points.setWavelength_change2th(self.geoRef.wavelength)
        self.peakPicker.points.save(self.basename + ".npt")
        self.geoRef.save(self.basename + ".poni")
        self.geoRef.mask = self.mask
        self.geoRef.del_ttha()
        self.geoRef.del_dssa()
        self.geoRef.del_chia()
        t0 = time.time()
        tth = self.geoRef.twoThetaArray(self.peakPicker.shape)
        t1 = time.time()
        dsa = self.geoRef.solidAngleArray(self.peakPicker.shape)
        t2 = time.time()
        self.geoRef.chiArray(self.peakPicker.shape)
        t2a = time.time()
        self.geoRef.cornerArray(self.peakPicker.shape)
        t2b = time.time()
        if self.gui:
            if self.fig3 is None:
                self.fig3 = pylab.plt.figure()
            else:
                self.fig3.clf()
            self.ax_xrpd_1d = self.fig3.add_subplot(1, 2, 1)
            self.ax_xrpd_2d = self.fig3.add_subplot(1, 2, 2)
        t3 = time.time()
        a, b = self.geoRef.integrate1d(self.peakPicker.data, self.nPt_1D,
                                filename=self.basename + ".xy", unit=self.unit,
                                polarization_factor=self.polarization_factor,
                                method="splitbbox")
        t4 = time.time()
        img, pos_rad, pos_azim = self.geoRef.integrate2d(self.peakPicker.data, self.nPt_2D_rad, self.nPt_2D_azim,
                                filename=self.basename + ".azim", unit=self.unit,
                                polarization_factor=self.polarization_factor,
                                method="splitbbox")
        t5 = time.time()
        logger.info(os.linesep.join(["Timings:",
                                " * two theta array generation %.3fs" % (t1 - t0),
                                " * diff Solid Angle           %.3fs" % (t2 - t1),
                                " * chi array generation       %.3fs" % (t2a - t2),
                                " * corner coordinate array    %.3fs" % (t2b - t2a),
                                " * 1D Azimuthal integration   %.3fs" % (t4 - t3),
                                " * 2D Azimuthal integration   %.3fs" % (t5 - t4)]))
        if self.gui:
            self.ax_xrpd_1d.plot(a, b)
            # GF: Add vertical line for each used calibration ring:
            xValues = None
            twoTheta = numpy.array([i for i in self.peakPicker.points.calibrant.get_2th() if i])  # in radian
            if self.unit == units.TTH_DEG:
                xValues = numpy.rad2deg(twoTheta)
            elif self.unit == units.TTH_RAD:
                xValues = twoTheta
            elif self.unit == units.Q_A:
                xValues = (4.e-10 * numpy.pi / self.wavelength) * numpy.sin(.5 * twoTheta)
            elif self.unit == units.Q_NM:
                xValues = (4.e-9 * numpy.pi / self.wavelength) * numpy.sin(.5 * twoTheta)
            elif self.unit == units.R_MM:
                # GF: correct formula?
                dBeamCentre = self.geoRef.getFit2D()["directDist"] # in mm!!
                xValues = dBeamCentre * numpy.tan(twoTheta)
            else:
                logger.warning('Unknown unit %s, do not plot calibration rings' % str(self.unit))
            if xValues is not None:
                for x in xValues:
                    line = matplotlib.lines.Line2D([x, x], self.ax_xrpd_1d.axis()[2:4],
                                                   color='red', linestyle='--')
                    self.ax_xrpd_1d.add_line(line)
            self.ax_xrpd_1d.set_title("1D integration")
            self.ax_xrpd_1d.set_xlabel(self.unit)
            self.ax_xrpd_1d.set_ylabel("Intensity")
            self.ax_xrpd_2d.imshow(numpy.log(img - img.min() + 1e-3), origin="lower",
                         extent=[pos_rad.min(), pos_rad.max(), pos_azim.min(), pos_azim.max()],
                         aspect="auto")
            self.ax_xrpd_2d.set_title("2D regrouping")
            self.ax_xrpd_2d.set_xlabel(self.unit)
            self.ax_xrpd_2d.set_ylabel("Azimuthal angle (deg)")
            if not gui_utils.main_loop:
                self.fig3.show()
            update_fig(self.fig3)

    def validate_calibration(self):
        """
        Validate the calivration and calculate the offset in the diffraction image
        """
        if not self.check_calib:
            self.check_calib = CheckCalib()
        if self.geoRef:
            self.ai.setPyFAI(**self.geoRef.getPyFAI())
            self.ai.wavelength = self.geoRef.wavelength
        self.check_calib.ai = self.ai
        self.check_calib.img = self.peakPicker.data
        self.check_calib.mask = self.peakPicker.mask
        self.check_calib.wavelength = self.check_calib.wavelength
        self.check_calib.integrate()
        self.check_calib.rebuild()
        self.check_calib.show()

################################################################################
# Calibration
################################################################################

    def set_data(self, data):
        """
        call-back function for the peak-picker
        """
        self.data = data
        if not self.weighted:
            self.data = numpy.array(self.data)[:, :-1]
        self.refine()

class Calibration(AbstractCalibration):
    """
    class doing the calibration of frames
    """
    def __init__(self, dataFiles=None, darkFiles=None, flatFiles=None, pixelSize=None,
                 splineFile=None, detector=None, gaussianWidth=None,
                 wavelength=None, calibrant=None):
        """
        Constructor for calibration:

        @param dataFiles: list of filenames containing data images
        @param darkFiles: list of filenames containing dark current images
        @param flatFiles: list of filenames containing flat images
        @param pixelSize: size of the pixel in meter as 2 tuple
        @param splineFile: file containing the distortion of the taper
        @param detector: Detector name or instance
        @param wavelength: radiation wavelength in meter
        @param calibrant: pyFAI.calibrant.Calibrant instance

        """
        AbstractCalibration.__init__(self, dataFiles=dataFiles,
                                     darkFiles=darkFiles,
                                     flatFiles=flatFiles,
                                     pixelSize=pixelSize,
                                     splineFile=splineFile,
                                     detector=detector,
                                     calibrant=calibrant,
                                     wavelength=wavelength)
        self.gaussianWidth = gaussianWidth
        self.labelPattern = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]

    def __repr__(self):
        return AbstractCalibration.__repr__(self) + \
            "%sgaussian= %s" % (os.linesep, self.gaussianWidth)

    def parse(self):
        """
        parse options from command line
        """
        description = """Calibrate the diffraction setup geometry based on Debye-Sherrer rings images
without a priori knowledge of your setup.
You will need to provide a calibrant or a "d-spacing" file containing the spacing of Miller plans in
Angstrom (in decreasing order).
%s
or search in the American Mineralogist database:
http://rruff.geo.arizona.edu/AMS/amcsd.php
The --calibrant option is mandatory !""" % str(ALL_CALIBRANTS)

        epilog = """The output of this program is a "PONI" file containing the detector description
and the 6 refined parameters (distance, center, rotation) and wavelength.
An 1D and 2D diffraction patterns are also produced. (.dat and .azim files)
        """
        usage = "pyFAI-calib [options] -w 1 -D detector -c calibrant.D imagefile.edf"
        self.configure_parser(usage=usage, description=description, epilog=epilog)  # common
        self.parser.add_argument("-r", "--reconstruct", dest="reconstruct",
              help="Reconstruct image where data are masked or <0  (for Pilatus "\
              "detectors or detectors with modules)",
              action="store_true", default=False)

        self.parser.add_argument("-g", "--gaussian", dest="gaussian",
                               help="""Size of the gaussian kernel.
Size of the gap (in pixels) between two consecutive rings, by default 100
Increase the value if the arc is not complete;
decrease the value if arcs are mixed together.""", default=None)
        self.parser.add_argument("--square", dest="square", action="store_true",
            help="Use square kernel shape for neighbor search instead of diamond shape",
            default=False)
        self.parser.add_argument("-p", "--pixel", dest="pixel",
                      help="size of the pixel in micron", default=None)


        (options, _) = self.analyse_options()
        # Analyse remaining aruments and options
        self.reconstruct = options.reconstruct
        self.gaussianWidth = options.gaussian
        if options.square:
            self.labelPattern = [[1] * 3] * 3
        else:
            self.labelPattern = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]

        if options.pixel is not None:
            self.get_pixelSize(options.pixel)


    def preprocess(self):
        """
        do dark, flat correction thresholding, ...
        """
        AbstractCalibration.preprocess(self)

        if self.gaussianWidth is not None:
            self.peakPicker.massif.setValleySize(self.gaussianWidth)
        else:
            self.peakPicker.massif.initValleySize()
        if self.gui:
            self.peakPicker.gui(log=True, maximize=True, pick=True)
            update_fig(self.peakPicker.fig)

    def gui_peakPicker(self):
        if self.peakPicker is None:
            self.preprocess()
#        self.peakPicker.gui(True)
        if os.path.isfile(self.pointfile):
            self.peakPicker.load(self.pointfile)
        if self.gui:
            update_fig(self.peakPicker.fig)
#        self.peakPicker.finish(self.pointfile, callback=self.set_data)
        self.set_data(self.peakPicker.finish(self.pointfile))
#        raw_input("Please press enter when you are happy with your selection" + os.linesep)
#        while self.data is None:
#            update_fig(self.peakPicker.fig)
#            time.sleep(0.1)

    def refine(self):
        """
        Contains the geometry refinement part specific to Calibration
        """
        self.geoRef = GeometryRefinement(self.data, dist=0.1, detector=self.detector,
                                         wavelength=self.wavelength,
                                         calibrant=self.calibrant)
#        print self.calibrant
        paramfile = self.basename + ".poni"
        if os.path.isfile(paramfile):
            self.geoRef.load(paramfile)
            if self.wavelength:
                try:
                    old_wl = self.geoRef.wavelength
                except:
                    pass
                else:
                    logger.warning("Overwriting wavelength from PONI file (%s) with the one from command line (%s)" % (old_wl, self.wavelength))
                self.geoRef.wavelength = self.wavelength
            if self.detector:
                gr_det = str(self.geoRef.detector)
                nw_det = str(self.detector)
                if gr_det != nw_det:
                    logger.warning("Overwriting detector from PONI file: %s%s with the one from command line %s%s" % (os.linesep, gr_det, os.linesep, nw_det))
                    self.geoRef.detector = self.detector

        AbstractCalibration.refine(self)


################################################################################
# Recalibration
################################################################################

class Recalibration(AbstractCalibration):
    """
    class doing the re-calibration of frames
    """
    def __init__(self, dataFiles=None, darkFiles=None, flatFiles=None, pixelSize=None,
                 splineFile=None, detector=None, wavelength=None, calibrant=None):
        """
        Constructor for Recalibration:

        @param dataFiles: list of filenames containing data images
        @param darkFiles: list of filenames containing dark current images
        @param flatFiles: list of filenames containing flat images
        @param pixelSize: size of the pixel in meter as 2 tuple
        @param splineFile: file containing the distortion of the taper
        @param detector: Detector name or instance
        @param wavelength: radiation wavelength in meter
        @param calibrant: pyFAI.calibrant.Calibrant instance
        """
        AbstractCalibration.__init__(self, dataFiles=dataFiles,
                                     darkFiles=darkFiles,
                                     flatFiles=flatFiles,
                                     pixelSize=pixelSize,
                                     splineFile=splineFile,
                                     detector=detector,
                                     wavelength=wavelength,
                                     calibrant=calibrant)

    def parse(self):
        """
        parse options from command line
        """
        description = """Calibrate the diffraction setup geometry based on Debye-Sherrer rings images
with a priori knowledge of your setup (an input PONI-file).
You will need to provide a calibrant or a "d-spacing" file containing the spacing of Miller plans in
Angstrom (in decreasing order).
%s
or search in the American Mineralogist database:
http://rruff.geo.arizona.edu/AMS/amcsd.php
The --calibrant option is mandatory !
""" % str(ALL_CALIBRANTS)

        epilog = """The main difference with pyFAI-calib is the way control-point hence Debye-Sherrer
rings are extracted. While pyFAI-calib relies on the contiguity of a region of peaks
called massif; pyFAI-recalib knows approximatly the geometry and is able to select
the region where the ring should be. From this region it selects automatically
the various peaks; making pyFAI-recalib able to run without graphical interface and
without human intervention (--no-gui and --no-interactive options).


Note that `pyFAI-recalib` program is obsolete as the same functionnality is
available from within pyFAI-calib, using the `recalib` command in the
refinement process.
Two option are available for recalib: the numbe of rings to extract (similar to the -r option of this program)
and a new option which lets you choose between the original `massif` algorithm and the new `blob` detection.
        """
        usage = "pyFAI-recalib [options] -p ponifile -w 1 -c calibrant.D imagefile.edf"
        self.configure_parser(usage=usage, description=description, epilog=epilog)

        self.parser.add_argument("-r", "--ring", dest="max_rings", type=int,
                      help="maximum number of rings to extract. Default: all accessible", default=None)
        self.parser.add_argument("-p", "--poni", dest="poni", metavar="FILE",
                      help="file containing the diffraction parameter (poni-file). MANDATORY",
                      default=None)
        self.parser.add_argument("-k", "--keep", dest="keep",
                      help="Keep existing control point and append new",
                      default=False, action="store_true")

        options, args = self.parser.parse_args()
        # Analyse aruments and options
        if (not options.poni) or (not os.path.isfile(options.poni)):
            logger.error("You should provide a PONI file as starting point !!")
        else:
            self.ai = AzimuthalIntegrator.sload(options.poni)
        if self.wavelength:
            self.ai.wavelength = self.wavelength
        self.max_rings = options.max_rings
        self.detector = self.ai.detector
        self.keep = options.keep
        self.analyse_options(options, args)


    def read_dSpacingFile(self):
        """Read the name of the file with d-spacing"""
        AbstractCalibration.read_dSpacingFile(self, verbose=False)


    def preprocess(self):
        """
        do dark, flat correction thresholding, ...
        """
        AbstractCalibration.preprocess(self)

        if self.gui:
            self.peakPicker.gui(log=True, maximize=True, pick=False)
            update_fig(self.peakPicker.fig)



    def refine(self):
        """
        Contains the geometry refinement part specific to Recalibration
        """

        self.geoRef = GeometryRefinement(self.data, dist=self.ai.dist, poni1=self.ai.poni1,
                                         poni2=self.ai.poni2, rot1=self.ai.rot1,
                                         rot2=self.ai.rot2, rot3=self.ai.rot3,
                                         detector=self.ai.detector, calibrant=self.calibrant,
                                         wavelength=self.wavelength)
        self.ai = self.geoRef
        self.geoRef.set_tolerance(10)
        AbstractCalibration.refine(self)


class MultiCalib(object):
    def __init__(self, dataFiles=None, darkFiles=None, flatFiles=None, pixelSize=None, splineFile=None, detector=None):
        """
        """
        self.dataFiles = dataFiles or []
        self.darkFiles = darkFiles or []
        self.flatFiles = flatFiles or []
        self.data = {}

        self.detector = get_detector(detector, dataFiles)

        if splineFile and os.path.isfile(splineFile):
            self.detector.splineFile = os.path.abspath(splineFile)
        if pixelSize:
            if "__len__" in dir(pixelSize) and len(pixelSize) >= 2:
                self.detector.pixel1 = float(pixelSize[0])
                self.detector.pixel2 = float(pixelSize[1])
            else:
                self.detector.pixel1 = self.detector.pixel2 = float(pixelSize)
        self.cutBackground = None
        self.outfile = "merged.edf"
        self.peakPicker = "blob"
        self.basename = None
        self.geoRef = None
#        self.reconstruct = False
        self.mask = None
        self.max_iter = 1000
        self.filter = "mean"
        self.saturation = 0.1
        self.calibrant = None
        self.wavelength = None
        self.weighted = False
        self.polarization_factor = 0
        self.results = {}
        self.gui = True
        self.interactive = True
        self.centerX = None
        self.centerY = None
        self.distance = None
        self.fixed = []
        self.max_rings = None


    def __repr__(self):
        lst = ["Multi-Calibration object:",
             "data= " + ", ".join(self.dataFiles),
             "dark= " + ", ".join(self.darkFiles),
             "flat= " + ", ".join(self.flatFiles)]
        lst.append(self.detector.__repr__())
#        lst.append("gaussian= %s" % self.gaussianWidth)
        return os.linesep.join(lst)

    def parse(self):
        """
        parse options from command line
        """
        usage = "MX-Calibrate -w 1.54 -c CeO2 file1.cbf file2.cbf ..."
        version = "MX-Calibrate from pyFAI version %s: %s" % (PyFAI_VERSION, PyFAI_DATE)
        description = """
        Calibrate automatically a set of frames taken at various sample-detector distance.
        Return the linear regression of the fit in funtion of the sample-setector distance.
        """
        epilog = """This tool has been developed for ESRF MX-beamlines where an acceptable calibration is
        usually present is the header of the image. PyFAI reads it and does a "recalib" on
        each of them before exporting a linear regression of all parameters versus this distance.
        """
        parser = ArgumentParser(usage=usage, description=description, epilog=epilog)
        parser.add_argument("-V", "--version", action='version', version=version)
        parser.add_argument("args", metavar="FILE", help="List of files to calibrate", nargs='+')
#        parser.add_argument("-V", "--version", dest="version", action="store_true",
#                          help="print version of the program and quit", metavar="FILE", default=False)
#        parser.add_argument("-o", "--out", dest="outfile",
#                          help="Filename where processed image is saved", metavar="FILE", default="merged.edf")
        parser.add_argument("-v", "--verbose",
                          action="store_true", dest="debug", default=False,
                          help="switch to debug/verbose mode")
#        parser.add_argument("-g", "--gaussian", dest="gaussian", help="""Size of the gaussian kernel.
#Size of the gap (in pixels) between two consecutive rings, by default 100
#Increase the value if the arc is not complete;
#decrease the value if arcs are mixed together.""", default=None)
#        parser.add_argument("-c", "--square", dest="square", action="store_true",
#                      help="Use square kernel shape for neighbor search instead of diamond shape", default=False)
        parser.add_argument("-c", "--calibrant", dest="calibrant", metavar="FILE",
                      help="file containing d-spacing of the calibrant reference sample (MANDATORY)", default=None)
        parser.add_argument("-w", "--wavelength", dest="wavelength", type=float,
                      help="wavelength of the X-Ray beam in Angstrom", default=None)
        parser.add_argument("-e", "--energy", dest="energy", type=float,
                      help="energy of the X-Ray beam in keV (hc=%skeV.A)" % hc, default=None)
        parser.add_argument("-P", "--polarization", dest="polarization_factor",
                      type=float, default=0.0,
                      help="polarization factor, from -1 (vertical) to +1 (horizontal), default is 0, synchrotrons are around 0.95")
        parser.add_argument("-b", "--background", dest="background",
                      help="Automatic background subtraction if no value are provided", default=None)
        parser.add_argument("-d", "--dark", dest="dark",
                      help="list of dark images to average and subtract", default=None)
        parser.add_argument("-f", "--flat", dest="flat",
                      help="list of flat images to average and divide", default=None)
#        parser.add_argument("-r", "--reconstruct", dest="reconstruct",
#                      help="Reconstruct image where data are masked or <0  (for Pilatus detectors or detectors with modules)",
#                      action="store_true", default=False)
        parser.add_argument("-s", "--spline", dest="spline",
                      help="spline file describing the detector distortion", default=None)
        parser.add_argument("-p", "--pixel", dest="pixel",
                      help="size of the pixel in micron", default=None)
        parser.add_argument("-D", "--detector", dest="detector_name",
                      help="Detector name (instead of pixel size+spline)", default=None)
        parser.add_argument("-m", "--mask", dest="mask",
                      help="file containing the mask (for image reconstruction)", default=None)
#        parser.add_argument("-n", "--npt", dest="npt",
#                      help="file with datapoints saved", default=None)
        parser.add_argument("--filter", dest="filter",
                      help="select the filter, either mean(default), max or median",
                       default="mean")
        parser.add_argument("--saturation", dest="saturation",
                      help="consider all pixel>max*(1-saturation) as saturated and reconstruct them",
                      default=0.1, type=float)
        parser.add_argument("-r", "--ring", dest="max_rings", type=float,
                      help="maximum number of rings to extract", default=None)

        parser.add_argument("--weighted", dest="weighted",
                      help="weight fit by intensity",
                       default=False, action="store_true")
        parser.add_argument("-l", "--distance", dest="distance", type=float,
                      help="sample-detector distance in millimeter", default=None)
        parser.add_argument("--no-tilt", dest="tilt",
                      help="refine the detector tilt", default=True , action="store_false")
        parser.add_argument("--poni1", dest="poni1", type=float,
                      help="poni1 coordinate in meter", default=None)
        parser.add_argument("--poni2", dest="poni2", type=float,
                      help="poni2 coordinate in meter", default=None)
        parser.add_argument("--rot1", dest="rot1", type=float,
                      help="rot1 in radians", default=None)
        parser.add_argument("--rot2", dest="rot2", type=float,
                      help="rot2 in radians", default=None)
        parser.add_argument("--rot3", dest="rot3", type=float,
                      help="rot3 in radians", default=None)

        parser.add_argument("--fix-dist", dest="fix_dist",
                      help="fix the distance parameter", default=None, action="store_true")
        parser.add_argument("--free-dist", dest="fix_dist",
                      help="free the distance parameter", default=None, action="store_false")

        parser.add_argument("--fix-poni1", dest="fix_poni1",
                      help="fix the poni1 parameter", default=None, action="store_true")
        parser.add_argument("--free-poni1", dest="fix_poni1",
                      help="free the poni1 parameter", default=None, action="store_false")

        parser.add_argument("--fix-poni2", dest="fix_poni2",
                      help="fix the poni2 parameter", default=None, action="store_true")
        parser.add_argument("--free-poni2", dest="fix_poni2",
                      help="free the poni2 parameter", default=None, action="store_false")

        parser.add_argument("--fix-rot1", dest="fix_rot1",
                      help="fix the rot1 parameter", default=None, action="store_true")
        parser.add_argument("--free-rot1", dest="fix_rot1",
                      help="free the rot1 parameter", default=None, action="store_false")

        parser.add_argument("--fix-rot2", dest="fix_rot2",
                      help="fix the rot2 parameter", default=None, action="store_true")
        parser.add_argument("--free-rot2", dest="fix_rot2",
                      help="free the rot2 parameter", default=None, action="store_false")

        parser.add_argument("--fix-rot3", dest="fix_rot3",
                      help="fix the rot3 parameter", default=None, action="store_true")
        parser.add_argument("--free-rot3", dest="fix_rot3",
                      help="free the rot3 parameter", default=None, action="store_false")

        parser.add_argument("--fix-wavelength", dest="fix_wavelength",
                      help="fix the wavelength parameter", default=True, action="store_true")
        parser.add_argument("--free-wavelength", dest="fix_wavelength",
                      help="free the wavelength parameter", default=True, action="store_false")


        parser.add_argument("--no-gui", dest="gui",
                      help="force the program to run without a Graphical interface",
                      default=True, action="store_false")
        parser.add_argument("--gui", dest="gui",
                      help="force the program to run with a Graphical interface",
                      default=True, action="store_true")

        parser.add_argument("--no-interactive", dest="interactive",
                      help="force the program to run and exit without prompting for refinements",
                      default=True, action="store_false")
        parser.add_argument("--interactive", dest="interactive",
                      help="force the program to prompt for refinements",
                      default=True, action="store_true")
        parser.add_argument("--peak-picker", dest="peakPicker",
                      help="Uses the 'massif' or the 'blob' peak-picker algorithm (default: blob)",
                      default="blob", type=str)
        options = parser.parse_args()

        # Analyse aruments and options
        if options.debug:
            logger.setLevel(logging.DEBUG)
        if options.background is not None:
            try:
                self.cutBackground = float(options.background)
            except Exception:
                self.cutBackground = True
        if options.dark:
            self.darkFiles = [f for f in options.dark.split(",") if os.path.isfile(f)]
        if options.flat:
            self.flatFiles = [f for f in options.flat.split(",") if os.path.isfile(f)]
        if options.mask and os.path.isfile(options.mask):
            self.mask = fabio.open(options.mask).data

        if options.detector_name:
            self.detector = get_detector(options.detector_name, options.args)
        if options.spline:
            if os.path.isfile(options.spline):
                self.detector.splineFile = os.path.abspath(options.spline)
            else:
                logger.error("Unknown spline file %s" % (options.spline))
        if options.pixel is not None:
            self.get_pixelSize(options.pixel)
        self.filter = options.filter
        self.saturation = options.saturation
        if options.wavelength:
            self.wavelength = 1e-10 * options.wavelength
        elif options.energy:
            self.wavelength = 1e-10 * hc / options.energy
        if not options.calibrant:
            logger.error("The calibrant is mandatory: please use the -c option")
        self.calibrant = options.calibrant
        self.polarization_factor = options.polarization_factor
        self.gui = options.gui
        self.interactive = options.interactive
        self.max_rings = options.max_rings
        self.fixed = []
        if not options.tilt:
            self.fixed += ["rot1", "rot2", "rot3"]
        if options.fix_dist:
            self.fixed.append("dist")
        if options.fix_poni1:
            self.fixed.append("poni1")
        if options.fix_poni2:
            self.fixed.append("poni2")
        if options.fix_rot1:
            self.fixed.append("rot1")
        if options.fix_rot2:
            self.fixed.append("rot2")
        if options.fix_rot3:
            self.fixed.append("rot3")
        if options.fix_wavelength:
            self.fixed.append("wavelength")

        self.dataFiles = [f for f in options.args if os.path.isfile(f)]
        if not self.dataFiles:
            raise RuntimeError("Please provide some calibration images ... "
                               "if you want to analyze them. Try also the --help option to see all options!")
        self.weighted = options.weighted
        if options.peakPicker.lower() in ["blob", "massif"]:
            self.peakPicker = options.peakPicker.lower()

    def get_pixelSize(self, ans):
        """convert a comma separated sting into pixel size"""
        sp = ans.split(",")
        if len(sp) >= 2:
            try:
                pixelSizeXY = [float(i) * 1e-6 for i in sp[:2]]
            except Exception:
                logger.error("error in reading pixel size_2")
                return
        elif len(sp) == 1:
            px = sp[0]
            try:
                pixelSizeXY = [float(px) * 1e-6, float(px) * 1e-6]
            except Exception:
                logger.error("error in reading pixel size_1")
                return
        else:
            logger.error("error in reading pixel size_0")
            return
        self.detector.pixel1 = pixelSizeXY[1]
        self.detector.pixel2 = pixelSizeXY[0]

    def read_pixelsSize(self):
        """Read the pixel size from prompt if not available"""
        if (self.detector.pixel1 is None) and (self.detector.splineFile is None):
            pixelSize = [15, 15]
            ans = raw_input("Please enter the pixel size (in micron, comma separated X, Y "
                            "i.e. %.2e,%.2e) or a spline file: " % tuple(pixelSize)).strip()
            if os.path.isfile(ans):
                self.detector.splineFile = ans
            else:
                self.get_pixelSize(ans)


    def read_dSpacingFile(self):
        """Read the name of the calibrant or the file with d-spacing"""
        if self.calibrant in ALL_CALIBRANTS:
            self.calibrant = ALL_CALIBRANTS[self.calibrant]
        elif os.path.isfile(self.calibrant):
            self.calibrant = Calibrant(filename=self.calibrant)
        else:
            comments = ["MX-calibrate has changed !!!",
                        "Instead of entering the 2theta value, which was tedious,"
                        "the program takes a calibrant as in input "
                        "(either a reference one like Ceo2, either a "
                        "d-spacing file with inter planar distance in Angstrom)",
                        "and an associated wavelength", ""
                        "You will be asked to enter the ring number, "
                        "which is usually a simpler than the 2theta value."]
            print(os.linesep.join(comments))
            ans = ""
            while not self.calibrant:
                ans = raw_input("Please enter the name of the calibrant"
                                " or the file containing the d-spacing:\t").strip()
                if ans in ALL_CALIBRANTS:
                    self.calibrant = ALL_CALIBRANTS[ans]
                elif os.path.isfile(ans):
                    self.calibrant = Calibrant(filename=ans)


    def read_wavelength(self):
        """Read the wavelength"""
        while not self.wavelength:
            ans = raw_input("Please enter wavelength in Angstrom:\t").strip()
            try:
                self.wavelength = 1e-10 * float(ans)
            except:
                self.wavelength = None

    def process(self):
        """

        """
        self.dataFiles.sort()
        for fn in self.dataFiles:
            fabimg = fabio.open(fn)
            wavelength = self.wavelength
            dist = self.distance
            centerX = self.centerX
            centerY = self.centerY
            if "_array_data.header_contents" in fabimg.header:
                headers = fabimg.header["_array_data.header_contents"].lower().split()
                if "detector_distance" in headers:
                    dist = float(headers[headers.index("detector_distance") + 1])
                if "wavelength" in headers:
                    wavelength = float(headers[headers.index("wavelength") + 1]) * 1e-10
                if "beam_xy" in headers:
                    centerX = float(headers[headers.index("beam_xy") + 1][1:-1])
                    centerY = float(headers[headers.index("beam_xy") + 2][:-1])
            if dist is None:
                digits = ""
                for i in os.path.basename(fn):
                    if i.isdigit() and not digits:
                        digits += i
                    elif i.isdigit():
                        digits += i
                    elif not i.isdigit() and digits:
                        break
                dist = int(digits) * 0.001
            if centerX is None:
                centerX = fabimg.data.shape[1] // 2
            if centerY is None:
                centerY = fabimg.data.shape[0] // 2
            self.results[fn] = {"wavelength":wavelength, "dist":dist}
            rec = Recalibration(dataFiles=[fn], darkFiles=self.darkFiles, flatFiles=self.flatFiles,
                                                  detector=self.detector, calibrant=self.calibrant, wavelength=wavelength)
            rec.outfile = os.path.splitext(fn)[0] + ".proc.edf"
            rec.interactive = self.interactive
            rec.gui = self.gui
            rec.saturation = self.saturation
            rec.mask = self.mask
            rec.filter = self.filter
            rec.cutBackground = self.cutBackground
            rec.fixed = self.fixed
            rec.max_rings = self.max_rings
            rec.weighted = self.weighted
            if centerY:
                rec.ai.poni1 = centerY * self.detector.pixel1
            if centerX:
                rec.ai.poni2 = centerX * self.detector.pixel2
            if dist:
                rec.ai.dist = dist
            rec.preprocess()
            rec.extract_cpt(method=self.peakPicker)
            rec.refine()
            self.results[fn]["ai"] = rec.ai

    def regression(self):
        print self.results
        dist = numpy.zeros(len(self.results))
        x = dist.copy()
        poni1 = dist.copy()
        poni2 = dist.copy()
        rot1 = dist.copy()
        rot2 = dist.copy()
        rot3 = dist.copy()
        direct = dist.copy()
        tilt = dist.copy()
        trp = dist.copy()
        centerX = dist.copy()
        centerY = dist.copy()
        idx = 0
        print("")
        print("Results of linear regression for distance in mm")
        for key, dico in  self.results.iteritems():
            print key, dico["dist"]
            print dico["ai"]
            x[idx] = dico["dist"] * 1000
            dist[idx] = dico["ai"].dist
            poni1[idx] = dico["ai"].poni1
            poni2[idx] = dico["ai"].poni2
            rot1[idx] = dico["ai"].rot1
            rot2[idx] = dico["ai"].rot2
            rot3[idx] = dico["ai"].rot3
            f = dico["ai"].getFit2D()
            direct[idx] = f["directDist"]
            tilt[idx] = f["tilt"]
            trp[idx] = f["tiltPlanRotation"]
            centerX[idx] = f["centerX"]
            centerY[idx] = f["centerY"]
            idx += 1
        for name, elt in [("dist", dist),
                         ("poni1", poni1), ("poni2", poni2),
                         ("rot1", rot1), ("rot2", rot2), ("rot3", rot3),
                         ("direct", direct), ("tilt", tilt), ("trp", trp),
                         ("centerX", centerX), ("centerY", centerY)]:
            slope, intercept, r, two, stderr = linregress(x, elt)

            print("%s = %s * dist_mm + %s \t R= %s\t stderr= %s" % (name, slope, intercept, r, stderr))

class CheckCalib(object):
    def __init__(self, poni=None, img=None, unit="2th_deg"):
        self.ponifile = poni
        if poni :
            self.ai = AzimuthalIntegrator.sload(poni)
        else:
            self.ai = None
        if img:
            self.img = fabio.open(img)
        else:
            self.img = None
        self.mask = None
        self.r = None
        self.I = None
        self.wavelength = None
        self.resynth = None
        self.delta = None
        self.unit = unit
        self.masked_resynth = None
        self.masked_image = None
        self.offset = None
        self.data = None
        self.fig = None

    def __repr__(self, *args, **kwargs):
        if self.ai:
            return self.ai.__repr__()

    def parse(self):
        logger.debug("in parse")
        usage = "usage: check_calib [options] -p param.poni image.edf"
        description = """Check_calib is a research tool aiming at validating both the geometric
calibration and everything else like flat-field correction, distortion
correction, at a sub-pixel level.

Note that `check_calib` program is obsolete as the same functionnality is
available from within pyFAI-calib, using the `validate` command in the
refinement process.
        """
        version = "check_calib from pyFAI version %s: %s" % (PyFAI_VERSION, PyFAI_DATE)
        parser = ArgumentParser(usage=usage,
                              description=description)
        parser.add_argument("-V", "--version", action='version', version=version)
        parser.add_argument("args", metavar="FILE", help="Image file to check calibration for", nargs='+')
        parser.add_argument("-v", "--verbose",
                          action="store_true", dest="verbose", default=False,
                          help="switch to debug mode")
        parser.add_argument("-d", "--dark", dest="dark", metavar="FILE", type=str,
                      help="file containing the dark images to subtract", default=None)
        parser.add_argument("-f", "--flat", dest="flat", metavar="FILE", type=str,
                      help="file containing the flat images to divide", default=None)
        parser.add_argument("-m", "--mask", dest="mask", metavar="FILE", type=str,
                      help="file containing the mask", default=None)
        parser.add_argument("-p", "--poni", dest="poni", metavar="FILE", type=str,
                      help="file containing the diffraction parameter (poni-file)",
                      default=None)
        parser.add_argument("-e", "--energy", dest="energy", type=float,
                      help="energy of the X-Ray beam in keV (hc=%skeV.A)" % hc, default=None)
        parser.add_argument("-w", "--wavelength", dest="wavelength", type=float,
                      help="wavelength of the X-Ray beam in Angstrom", default=None)

        options = parser.parse_args()
        if options.verbose:
            logger.setLevel(logging.DEBUG)

        if options.mask is not None:
            self.mask = (fabio.open(options.mask).data != 0)
        args = expand_args(options.args)
        if len(args) > 0:
            f = args[0]
            if os.path.isfile(f):
                self.img = fabio.open(f).data.astype(numpy.float32)
            else:
                print("Please enter diffraction images as arguments")
                sys.exit(1)
            for f in args[1:]:
                self.img += fabio.open(f).data
        if options.dark and os.path.exists(options.dark):
            self.img -= fabio.open(options.dark).data
        if options.flat and os.path.exists(options.flat):
            self.img /= fabio.open(options.flat).data
        if options.poni:
            self.ai = AzimuthalIntegrator.sload(options.poni)
        self.data = [f for f in args if os.path.isfile(f)]
        if options.poni is None:
            logger.error("PONI parameter is mandatory")
            sys.exit(1)
        self.ai = AzimuthalIntegrator.sload(options.poni)
        if options.wavelength:
            self.ai.wavelength = 1e-10 * options.wavelength
        elif options.energy:
            self.ai.wavelength = 1e-10 * hc / options.energy
#        else:
#            self.read_wavelength()


    def get_1dsize(self):
        logger.debug("in get_1dsize")
        return int(numpy.sqrt(self.img.shape[0] ** 2 + self.img.shape[1] ** 2))
    size1d = property(get_1dsize)

    def integrate(self):
        logger.debug("in integrate")
        self.r, self.I = self.ai.integrate1d(self.img, self.size1d, mask=self.mask,
                                             unit=self.unit, method="splitpixel")

    def rebuild(self):
        """
        Rebuild the diffraction image and measures the offset with the reference
        @return: offset
        """
        logger.debug("in rebuild")
        if self.r is None:
            self.integrate()

        self.resynth = self.ai.calcfrom1d(self.r, self.I, shape=self.img.shape, mask=self.mask,
                   dim1_unit=self.unit, correctSolidAngle=True)
        if self.mask is not None:
            self.img[numpy.where(self.mask)] = 0

        self.delta = self.resynth - self.img
        if self.mask is not None:
            smooth_mask = self.smooth_mask()
        else:
            smooth_mask = 1.0
        self.masked_resynth = self.resynth * smooth_mask
        self.masked_image = self.img * smooth_mask
        self.offset = measure_offset(self.masked_resynth, self.masked_image, withLog=0)
#        print os.linesep.join(log)
        print("Measured offset: %s" % str(self.offset))
        return self.offset

    def smooth_mask(self, hwhm=5):
        """
        smooth out around the mask to avoid aligning on the mask
        """
        logger.debug("in smooth_mask")
        fwhm = int(round(2.0 * hwhm))
        sigma = hwhm / math.sqrt(2 * math.log(2))

        if self.mask is not None:
            if not pyFAI_morphology:
                my, mx = numpy.ogrid[-fwhm: fwhm + 1, -fwhm:fwhm + 1]
                grow = (mx * mx + my * my) <= 4.0 * hwhm * hwhm
                big_mask = morphology.binary_dilation(self.mask, grow)
            else:
                big_mask = morphology.binary_dilation(self.mask.astype(numpy.int8), fwhm)
            smooth_mask = 1.0 - scipy.ndimage.filters.gaussian_filter(big_mask.astype(numpy.float32), sigma)
            return smooth_mask

    def show(self):
        """
        Show the image with the the errors
        """
        if self.fig is None:
            self.fig = pylab.figure()
            if not gui_utils.main_loop:
                self.fig.show()
        else:
            self.fig.clf()
        ax1 = self.fig.add_subplot(2, 2, 3)
        ax1.imshow(self.delta, aspect="auto", interpolation="nearest", origin="bottom")
        ax1.set_title("Difference image")
        ax2 = self.fig.add_subplot(2, 2, 1)
        ax2.imshow(self.masked_image, aspect="auto", interpolation="nearest", origin="bottom")
        ax2.set_title("Raw image")
        ax3 = self.fig.add_subplot(2, 2, 2)
        ax3.imshow(self.masked_resynth, aspect="auto", interpolation="nearest", origin="bottom")
        ax3.set_title("Rebuild image")
        ax4 = self.fig.add_subplot(2, 2, 4)
        ax4.plot(self.r, self.I)
        ax4.set_title("powder pattern")
        ax4.set_xlabel(r"2$\theta$ ($^o$)")
        ax4.set_ylabel("Intensity")
        update_fig(self.fig)