This file is indexed.

/usr/share/octave/site/m/sundialsTB/kinsol/examples_ser/mkinRoboKin_dns.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
function mkinRoboKin_dns
% mkinRoboKin_dns - nonlinear system from robot kinematics.
%
% Source: "Handbook of Test Problems in Local and Global Optimization",
%             C.A. Floudas, P.M. Pardalos et al.
%             Kluwer Academic Publishers, 1999.
% Test problem 6 from Section 14.1, Chapter 14
% 
% The nonlinear system is solved by KINSOL using the DENSE linear solver.
%
% Constraints are imposed to make all components of the solution be
% within [-1,1]. This is achieved by introducing additional "bound variables",
%    l_i = x_i + 1   and u-i = 1 - x_i, i = 1,...,nvar
% and using the Constraints option to KINSOL to enforce l_i >=0 and u_i >= 0.
 
% Radu Serban <radu@llnl.gov>
% Copyright (c) 2007, The Regents of the University of California.
% $Revision: 1.1 $Date: 2007/12/05 21:58:19 $


fprintf('\nRobot Kinematics Example\n');
fprintf('8 variables; -1 <= x_i <= 1\n');
fprintf('KINSOL problem size: 8 + 2*8 = 24 \n\n');

% Number of problem variables
nvar = 8;

% Number of equations = number of problem vars. + number of bound variables
neq = nvar + 2*nvar;
 
% Function tolerance
ftol = 1.0e-5;

% Step tolerance
stol = 1.0e-5;

% Constraints (all bound variables non-negative)
constraints = [ zeros(nvar,1); ones(nvar,1) ; ones(nvar,1) ];

% Force exact Newton
msbset = 1;

% Initialize solver
options = KINSetOptions('FuncNormTol', ftol, ...
                        'ScaledStepTol', stol, ...
                        'Constraints', constraints, ...
                        'MaxNumSetups', msbset, ...
                        'LinearSolver', 'Dense', ...
                        'JacobianFn', @sysjac);
KINInit(@sysfn, neq, options);

% Initial guess
y = ones(neq,1);
y(1:nvar) = 1.0/sqrt(2);

fprintf('Initial guess:\n');
PrintOutput(y);

% Call KINSol to solve the problem
yscale = ones(neq,1);
fscale = ones(neq,1);
strategy = 'LineSearch';
[status, y] = KINSol(y, strategy, yscale, fscale);

fprintf('\nComputed solution:\n');
PrintOutput(y);

% Print final statistics and free memory 
stats = KINGetStats;
ls_stats = stats.LSInfo;
fprintf('\nSolver statistics:');
stats
ls_stats

KINFree;

return;

% System function 
% ---------------

function [fy, flag] = sysfn(y)

% Extract problem variables and bound variables

x1 = y(1); l1 = y( 9); u1 = y(17); 
x2 = y(2); l2 = y(10); u2 = y(18); 
x3 = y(3); l3 = y(11); u3 = y(19); 
x4 = y(4); l4 = y(12); u4 = y(20); 
x5 = y(5); l5 = y(13); u5 = y(21); 
x6 = y(6); l6 = y(14); u6 = y(22); 
x7 = y(7); l7 = y(15); u7 = y(23); 
x8 = y(8); l8 = y(16); u8 = y(24); 

% Nonlinear equations 

eq1 = - 0.1238*x1 + x7 - 0.001637*x2 - 0.9338*x4 + 0.004731*x1*x3 - 0.3578*x2*x3 - 0.3571;
eq2 = 0.2638*x1 - x7 - 0.07745*x2 - 0.6734*x4 + 0.2238*x1*x3 + 0.7623*x2*x3 - 0.6022;
eq3 = 0.3578*x1 + 0.004731*x2 + x6*x8;
eq4 = - 0.7623*x1 + 0.2238*x2 + 0.3461;
eq5 = x1*x1 + x2*x2 - 1;
eq6 = x3*x3 + x4*x4 - 1;
eq7 = x5*x5 + x6*x6 - 1;
eq8 = x7*x7 + x8*x8 - 1;

% Lower bounds ( l_i = 1 + x_i >= 0)

lb1 = l1 - 1.0 - x1;
lb2 = l2 - 1.0 - x2;
lb3 = l3 - 1.0 - x3;
lb4 = l4 - 1.0 - x4;
lb5 = l5 - 1.0 - x5;
lb6 = l6 - 1.0 - x6;
lb7 = l7 - 1.0 - x7;
lb8 = l8 - 1.0 - x8;

% Upper bounds ( u_i = 1 - x_i >= 0)

ub1 = u1 - 1.0 + x1;
ub2 = u2 - 1.0 + x2;
ub3 = u3 - 1.0 + x3;
ub4 = u4 - 1.0 + x4;
ub5 = u5 - 1.0 + x5;
ub6 = u6 - 1.0 + x6;
ub7 = u7 - 1.0 + x7;
ub8 = u8 - 1.0 + x8;

% Load residuals for the problem equations
% and the equations encoding the constraints

fy(1) = eq1; fy( 9) = lb1; fy(17) = ub1;
fy(2) = eq2; fy(10) = lb2; fy(18) = ub2;
fy(3) = eq3; fy(11) = lb3; fy(19) = ub3;
fy(4) = eq4; fy(12) = lb4; fy(20) = ub4;
fy(5) = eq5; fy(13) = lb5; fy(21) = ub5;
fy(6) = eq6; fy(14) = lb6; fy(22) = ub6;
fy(7) = eq7; fy(15) = lb7; fy(23) = ub7;
fy(8) = eq8; fy(16) = lb8; fy(24) = ub8;

flag = 0;

return;


% System Jacobian
% ---------------

function [J, flag] = sysjac(y, fy)

% Extract problem variables

x1 = y(1);
x2 = y(2);
x3 = y(3);
x4 = y(4);
x5 = y(5);
x6 = y(6);
x7 = y(7);
x8 = y(8);

% Nonlinear equations

%  - 0.1238*x1 + x7 - 0.001637*x2 - 0.9338*x4 + 0.004731*x1*x3 - 0.3578*x2*x3 - 0.3571 

J(1,1) = - 0.1238 + 0.004731*x3;
J(1,2) = - 0.001637 - 0.3578*x3;
J(1,3) = 0.004731*x1 - 0.3578*x2;
J(1,4) = - 0.9338;
J(1,7) = 1.0;

% 0.2638*x1 - x7 - 0.07745*x2 - 0.6734*x4 + 0.2238*x1*x3 + 0.7623*x2*x3 - 0.6022

J(2,1) = 0.2638 + 0.2238*x3;
J(2,2) = - 0.07745 + 0.7623*x3;
J(2,3) = 0.2238*x1 + 0.7623*x2;
J(2,4) = - 0.6734;
J(2,7) = -1.0;

% 0.3578*x1 + 0.004731*x2 + x6*x8

J(3,1) = 0.3578;
J(3,2) = 0.004731;
J(3,6) = x8;
J(3,8) = x6;

% - 0.7623*x1 + 0.2238*x2 + 0.3461

J(4,1) = - 0.7623;
J(4,2) = 0.2238;

% x1*x1 + x2*x2 - 1

J(5,1) = 2.0*x1;
J(5,2) = 2.0*x2;

% x3*x3 + x4*x4 - 1

J(6,3) = 2.0*x3;
J(6,4) = 2.0*x4;

% x5*x5 + x6*x6 - 1

J(7,5) = 2.0*x5;
J(7,6) = 2.0*x6;

% x7*x7 + x8*x8 - 1

J(8,7) = 2.0*x7;
J(8,8) = 2.0*x8;

% Lower bounds ( l_i = 1 + x_i >= 0)
%     l_i - 1.0 - x_i

for i=1:8
  J(8+i,i)   = -1.0;
  J(8+i,8+i) =  1.0;
end

% Upper bounds ( u_i = 1 - x_i >= 0)
%     u_i - 1.0 + x_i

for i=1:8
  J(16+i,i)    = 1.0;
  J(16+i,16+i) = 1.0;
end

flag = 0;

return



% Print solution
% --------------

function PrintOutput(y)

nvar = 8;

fprintf('     l=x+1          x         u=1-x\n');
fprintf('   ----------------------------------\n');

for i = 1:nvar
  fprintf(' %10.6g   %10.6g   %10.6g\n', y(i+nvar), y(i), y(i+2*nvar));
end

return