This file is indexed.

/usr/share/octave/site/m/sundialsTB/idas/examples_ser/midasRoberts_ASAi_dns.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
function midasRoberts_ASAi_dns()
%midasRoberts_ASAi_dns - IDAS ASA example problem (serial, dense)
%   The following is a simple example problem, with the coding
%   needed for its solution by IDAS. The problem is from
%   chemical kinetics, and consists of the following three rate
%   equations:         
%      dy1/dt = -p1*y1 + p2*y2*y3
%      dy2/dt =  p1*y1 - p2*y2*y3 - p3*(y2)^2
%           0 = y1 + y2 + y3 - 1
%   on the interval from t = 0.0 to t = 4.e7, with initial
%   conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
%   While integrating the system, we also use the rootfinding
%   feature to find the points at which y1 = 1e-4 or at which
%   y3 = 0.01.
%
%   The gradient with respect to the problem parameters p1, p2,
%   and p3 of the following quantity:
%     G = int_t0^t1 y3(t) dt
%   is computed using ASA.
%          
%   The gradient dG/dp is obtained as:
%     dG/dp = [ int_t0^tf y1*(l1-l2) dt ,
%               int_t0^tf -y2*y3*(l1-l2) dt , 
%               int_t0^tf y2^2*l2 dt          ]
%              
%   where l = [l1, l2, l3] is solutions of:
%     dl1/dt = p1*l1 - p1*l2 + l3
%     dl2/dt = -p2*y3*l1 + (p2*y3+2*p3*y2)*l2 + l3
%          0 = -p2*y2*l1 + p2*y2*l2 + l3 + 1
%   with final conditions
%     l1(tf) = l2(tf) = 0.0  and l3(tf) = -1.0
%
%   All integrals (appearing in G and dG/dp) are computed using
%   the quadrature integration features in IDAS.

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2007, The Regents of the University of California.
% $Revision: 1.1 $Date: 2007/10/26 16:30:48 $

% Problem parameters
% ------------------

data.p = [0.04; 1.0e4; 3.0e7];

% Initialize forward problem
% --------------------------

options = IDASetOptions('UserData', data,...
                        'RelTol',1.e-4,...
                        'AbsTol',[1.e-8; 1.e-14; 1.e-6],...
                        'LinearSolver','Dense',...
                        'JacobianFn',@djacfn);

%mondata.sol = true;
%mondata.updt = 100;
%options = IDASetOptions(options,'MonitorFn',@IDAMonitor,'MonitorData',mondata);

t0 = 0.0;
y = [1.0;0.0;0.0];
yp = [-0.04;0.04;0.0];
IDAInit(@resfn,t0,y,yp,options);

% Initialize forward quadrature (G)
% ---------------------------------

optionsQ = IDAQuadSetOptions('ErrControl',true,...
                             'RelTol',1.e-4,'AbsTol',1.e-6);
q = 0.0;
IDAQuadInit(@quadfn, q, optionsQ);

% Activate ASA
% ------------

IDAAdjInit(150, 'Hermite');

% Forward integration
% -------------------

fprintf('Forward integration ');
tf =  4.e7;
[status, t, y, q] = IDASolve(tf,'Normal');
si = IDAGetStats;
fprintf('(%d steps)\n',si.nst);

fprintf('G = %12.4e\n',q(1));

% Initialize backward problem
% ---------------------------

optionsB = IDASetOptions('UserData',data,...
                         'RelTol',1.e-6,...
                         'AbsTol',1.e-3,...
                         'LinearSolver','Dense');
%mondataB = struct;
%optionsB = IDASetOptions(optionsB,'MonitorFn',@IDAMonitorB,'MonitorData',mondataB);

yB = [0.0 ; 0.0 ; -1.0];
yBp = [ -1.0 ; -1.0 ; 0.0 ];
idxB = IDAInitB(@resfnB,tf,yB,yBp,optionsB);

% Initialize backward quadratures (dG/dp)
% ---------------------------------------

optionsQB = IDAQuadSetOptions('ErrControl',true,...
                              'RelTol',1.e-6,'AbsTol',1.e-3);

qB = [0.0;0.0;0.0];
IDAQuadInitB(idxB, @quadfnB, qB, optionsQB);

% Backward integration
% --------------------

fprintf('Backward integration ');
[status, t, yB, qB] = IDASolveB(t0,'Normal');
siB = IDAGetStatsB(idxB);
fprintf('(%d steps)\n',siB.nst);

fprintf('dG/dp:      %12.4e  %12.4e  %12.4e\n',...
        -qB(1),-qB(2),-qB(3));
fprintf('lambda(t0): %12.4e  %12.4e  %12.4e\n',...
        yB(1),yB(2),yB(3));

% Free IDAS memory
% ----------------

IDAFree;

return

% ===========================================================================
function [rr, flag, new_data] = resfn(t, y, yp, data)
% DAE residual function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

rr(1) = -r1*y(1) + r2*y(2)*y(3) - yp(1);
rr(2) =  r1*y(1) - r2*y(2)*y(3) - r3*y(2)*y(2) - yp(2);
rr(3) = y(1) + y(2) + y(3) - 1.0;

flag = 0;
new_data = [];

% ===========================================================================
function [J, flag, new_data] = djacfn(t, y, yp, rr, cj, data)
% Dense Jacobian function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

J(1,1) = -r1 - cj;
J(2,1) = r1;
J(3,1) = 1.0;

J(1,2) = r2*y(3);
J(2,2) = -r2*y(3) - 2*r3*y(2) - cj;
J(3,2) = 1.0;

J(1,3) = r2*y(2);
J(2,3) = -r2*y(2);
J(3,3) = 1.0;

flag = 0;
new_data = [];

% ===========================================================================
function [qd, flag, new_data] = quadfn(t, y, yp, data)
% Forward quadrature integrand function

qd = y(3);

flag = 0;
new_data = [];

return

% ===========================================================================
function [rrB, flag, new_data] = resfnB(t, y, yp, yB, yBp, data)
% Adjoint residual function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);


rrB(1) = yBp(1) - r1*(yB(1)-yB(2)) - yB(3);
rrB(2) = yBp(2) + r2*y(3)*(yB(1)-yB(2)) - 2.0*r3*y(2)*yB(2) - yB(3);
rrB(3) = -r2*y(2)*(yB(1)-yB(2)) + yB(3) + 1.0;

flag = 0;
new_data = [];

return

% ===========================================================================
function [qBd, flag, new_data] = quadfnB(t, y, yp, yB, ypB, data)
% Backward problem quadrature integrand function

qBd(1) = y(1)*(yB(1)-yB(2));
qBd(2) = -y(2)*y(3)*(yB(1)-yB(2));
qBd(3) = y(2)^2*yB(2);

flag = 0;
new_data = [];

return