This file is indexed.

/usr/share/octave/site/m/sundialsTB/cvodes/examples_ser/mcvsRoberts_dns.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function mcvsRoberts_dns()
%mcvsRoberts_dns - CVODES example problem (serial, dense)
%   The following is a simple example problem, with the coding
%   needed for its solution by CVODES. The problem is from
%   chemical kinetics, and consists of the following three rate
%   equations:         
%      dy1/dt = -.04*y1 + 1.e4*y2*y3
%      dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2
%      dy3/dt = 3.e7*(y2)^2
%   on the interval from t = 0.0 to t = 4.e10, with initial
%   conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
%   While integrating the system, we also use the rootfinding
%   feature to find the points at which y1 = 1e-4 or at which
%   y3 = 0.01. This program solves the problem with the BDF method,
%   Newton iteration with the CVDENSE dense linear solver, and a
%   user-supplied Jacobian routine. It uses a scalar relative 
%   tolerance and a vector absolute tolerance and also illustrates
%   the rootfinding capability in CVODES.
%
%   Output is printed in decades from t = .4 to t = 4.e10.
%   Run statistics (optional outputs) are printed at the end.

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision: 1.1 $Date: 2007/10/26 16:30:48 $

data.p = [0.04; 1.0e4; 3.0e7];

t0 = 0.0;
y0 = [1.0;0.0;0.0];

options = CVodeSetOptions('UserData', data,...
                          'RelTol',1.e-8,...
                          'AbsTol',[1.e-8; 1.e-14; 1.e-6],...
                          'LinearSolver','Dense',...
                          'JacobianFn',@djacfn,...
                          'RootsFn',@rootfn, 'NumRoots',2);

mondata.sol = true;
mondata.mode = 'text';
mondata.skip = 9;
mondata.updt = 100;
options = CVodeSetOptions(options,'MonitorFn',@CVodeMonitor,'MonitorData',mondata);

CVodeInit(@rhsfn, 'BDF', 'Newton', t0, y0, options);

t1 = 0.4;
tmult = 10.0;
nout = 12;

iout = 0;
tout = t1;
while iout < nout

  [status,t,y] = CVode(tout,'Normal');
  
% Extract statistics
  si = CVodeGetStats;

% Print output
  fprintf('t = %0.2e   order = %1d  step = %0.2e',t, si.qlast, si.hlast);
  if(status == 2)
    fprintf(' ... Root found  %d   %d\n',si.RootInfo.roots(1), si.RootInfo.roots(2));
  else
    fprintf('\n');
  end
  fprintf('solution = [ %14.6e  %14.6e  %14.6e ]\n\n', y(1), y(2), y(3));

% Update output time
  if(status == 0)
    iout = iout+1;
    tout = tout*tmult;
  end
  
end

si = CVodeGetStats;

CVodeFree;

% ===========================================================================

function [yd, flag, new_data] = rhsfn(t, y, data)
% Right-hand side function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

yd(1) = -r1*y(1) + r2*y(2)*y(3);
yd(3) = r3*y(2)*y(2);
yd(2) = -yd(1) - yd(3);

flag = 0;
new_data = [];

return

% ===========================================================================

function [J, flag, new_data] = djacfn(t, y, fy, data)
% Dense Jacobian function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

J(1,1) = -r1;
J(1,2) = r2*y(3);
J(1,3) = r2*y(2);

J(2,1) = r1;
J(2,2) = -r2*y(3) - 2*r3*y(2);
J(2,3) = -r2*y(2);

J(3,2) = 2*r3*y(2);

flag = 0;
new_data = [];

return

% ===========================================================================

function [g, flag, new_data] = rootfn(t,y,data)
% Root finding function

g(1) = y(1) - 0.0001;
g(2) = y(3) - 0.01;

flag = 0;
new_data = [];