This file is indexed.

/usr/share/octave/site/m/sundialsTB/cvodes/examples_ser/mcvsRoberts_FSA_dns.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
function mcvsRoberts_FSA_dns()
%mcvsRoberts_FSA_dns - CVODES forward sensitivity example (serial, dense)
%   The following is a simple example problem, with the coding
%   needed for its solution by CVODES. The problem is from
%   chemical kinetics, and consists of the following three rate
%   equations:         
%      dy1/dt = -.04*y1 + 1.e4*y2*y3
%      dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2
%      dy3/dt = 3.e7*(y2)^2
%   on the interval from t = 0.0 to t = 4.e10, with initial
%   conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
%   While integrating the system, we also use the rootfinding
%   feature to find the points at which y1 = 1e-4 or at which
%   y3 = 0.01. This program solves the problem with the BDF method,
%   Newton iteration with the CVDENSE dense linear solver, and a
%   user-supplied Jacobian routine. It uses a scalar relative 
%   tolerance and a vector absolute tolerance.
%
%   Solution sensitivities with respect to the problem parameters
%   p1, p2, and p3 are computed using FSA. The sensitivity right-hand
%   side is given analytically through the user routine rhsSfn.
%   Tolerances for the sensitivity variables are estimated by
%   CVODES using the provided parameter scale information. The
%   sensitivity variables are included in the error test.
%
%   Output is printed in decades from t = .4 to t = 4.e10.
%   Run statistics (optional outputs) are printed at the end.

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision: 1.1 $Date: 2007/10/26 16:30:48 $

% -------------------
% User data structure
% -------------------

data.p = [0.04; 1.0e4; 3.0e7];

% ---------------------
% CVODES initialization
% ---------------------

options = CVodeSetOptions('UserData',data,...
                          'RelTol',1.e-4,...
                          'AbsTol',[1.e-8; 1.e-14; 1.e-6],...
                          'JacobianFn',@djacfn);

mondata = struct;
mondata.mode = 'both';
mondata.sol = true;
mondata.sensi = true;
options = CVodeSetOptions(options,'MonitorFn',@CVodeMonitor,'MonitorData',mondata);

t0 = 0.0;
y0 = [1.0;0.0;0.0];

CVodeInit(@rhsfn, 'BDF', 'Newton', t0, y0, options);


% ------------------
% FSA initialization
% ------------------

Ns = 2;
yS0 = zeros(3,Ns);

% Case 1: user-provided sensitivity RHS

FSAoptions = CVodeSensSetOptions('method','Simultaneous',...
                                 'ErrControl', true,...
                                 'ParamScales', [0.04; 1.0e4]);
CVodeSensInit(Ns, @rhsSfn, yS0, FSAoptions);

% Case 2: internal DQ approximation

%FSAoptions = CVodeSensSetOptions('method','Simultaneous',...
%                                 'ErrControl', true,...
%                                 'ParamField', 'p',...
%                                 'ParamList', [1 2],...
%                                 'ParamScales', [0.04 1.0e4]);
%CVodeSensInit(Ns, [], yS0, FSAoptions);

% ----------------
% Problem solution
% ----------------

t1 = 0.4;
tmult = 10.0;
nout = 12;

iout = 0;
tout = t1;
while 1,
  [status, t, y, yS] = CVode(tout,'Normal');
  fprintf('t = %0.2e\n',t);
  fprintf('solution      = [ %14.6e  %14.6e  %14.6e ]\n', y(1), y(2), y(3));
  fprintf('sensitivity 1 = [ %14.6e  %14.6e  %14.6e ]\n', yS(1,1), yS(2,1), yS(3,1));
  fprintf('sensitivity 2 = [ %14.6e  %14.6e  %14.6e ]\n\n', yS(1,2), yS(2,2), yS(3,2));
  if(status ==0)
    iout = iout+1;
    tout = tout*tmult;
  end
  if iout==nout
    break;
  end
end

si = CVodeGetStats

% -----------
% Free memory
% -----------

CVodeFree;

% ===========================================================================

function [yd, flag, new_data] = rhsfn(t, y, data)
% Right-hand side function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

yd(1) = -r1*y(1) + r2*y(2)*y(3);
yd(3) = r3*y(2)*y(2);
yd(2) = -yd(1) - yd(3);

flag = 0;
new_data = [];

return

% ===========================================================================

function [J, flag, new_data] = djacfn(t, y, fy, data)
% Dense Jacobian function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

J(1,1) = -r1;
J(1,2) = r2*y(3);
J(1,3) = r2*y(2);

J(2,1) = r1;
J(2,2) = -r2*y(3) - 2*r3*y(2);
J(2,3) = -r2*y(2);

J(3,2) = 2*r3*y(2);

flag = 0;
new_data = [];

return

% ===========================================================================

function [ySd, flag, new_data] = rhsSfn(t,y,yd,yS,data)
% Sensitivity right-hand side function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

% r1

yS1 = yS(:,1);
yS1d = zeros(3,1);

yS1d(1) = -r1*yS1(1) + r2*y(3)*yS1(2) + r2*y(2)*yS1(3);
yS1d(3) = 2*r3*y(2)*yS1(2);
yS1d(2) = -yS1d(1)-yS1d(3);

yS1d(1) = yS1d(1) - y(1);
yS1d(2) = yS1d(2) + y(1);

% r2

yS2 = yS(:,2);
yS2d = zeros(3,1);

yS2d(1) = -r1*yS2(1) + r2*y(3)*yS2(2) + r2*y(2)*yS2(3);
yS2d(3) = 2*r3*y(2)*yS2(2);
yS2d(2) = -yS2d(1)-yS2d(3);

yS2d(1) = yS2d(1) + y(2)*y(3);
yS2d(2) = yS2d(2) - y(2)*y(3);

% Return values

ySd = [yS1d yS2d];
flag = 0;
new_data = [];

return