This file is indexed.

/usr/share/octave/site/m/sundialsTB/cvodes/examples_ser/mcvsRoberts_ASAi_dns.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
function mcvsRoberts_ASAi_dns()
%mcvsRoberts_ASAi_dns - CVODES adjoint sensitivity example problem (serial, dense)
%   The following is a simple example problem, with the coding
%   needed for its solution by CVODES. The problem is from
%   chemical kinetics, and consists of the following three rate
%   equations:         
%      dy1/dt = -p1*y1 + p2*y2*y3
%      dy2/dt =  p1*y1 - p2*y2*y3 - p3*(y2)^2
%      dy3/dt =  p3*(y2)^2
%   on the interval from t = 0.0 to t = 4.e10, with initial
%   conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
%
%   This program solves the problem with the BDF method,
%   Newton iteration with the CVDENSE dense linear solver, and a
%   user-supplied Jacobian routine. It uses a scalar relative 
%   tolerance and a vector absolute tolerance.
%
%   The gradient with respect to the problem parameters p1, p2,
%   and p3 of the following quantity:
%     G = int_t0^t1 y3(t) dt
%   is computed using ASA.
% 
%   Writing the original ODE as:
%     dy/dt = f(y,p)
%     y(t0) = y0(p)
%   then the gradient with respect to the parameters p of
%     G(p) = int_t0^t1 g(y,p) dt
%   is obtained as:
%     dG/dp = int_t0^t1 (g_p + lambda^T f_p ) dt + lambda^T(t0)*y0_p
%           = -xi^T(t0) + lambda^T(t0)*y0_p
%   where lambda and xi are solutions of:
%     d(lambda)/dt = - (f_y)^T * lambda - (g_y)^T
%     lambda(t1) = 0
%   and
%     d(xi)/dt = (g_p)^T + (f_p)^T * lambda
%     xi(t1) = 0
%   
%   During the forward integration, CVODES also evaluates G as
%     G = q(t1)
%   where
%     dq/dt = g(t,y,p)
%     q(t0) = 0

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision: 1.2 $Date: 2009/04/26 23:26:45 $


% ----------------------------------------
% User data structure
% ----------------------------------------

data.p = [0.04; 1.0e4; 3.0e7];

% ----------------------------------------
% Forward CVODES options
% ----------------------------------------


options = CVodeSetOptions('UserData',data,...
                          'RelTol',1.e-6,...
                          'AbsTol',[1.e-8; 1.e-14; 1.e-6],...
                          'LinearSolver','Dense',...
                          'JacobianFn',@djacfn);

mondata = struct;
mondata.sol = true;
mondata.mode = 'both';
options = CVodeSetOptions(options,...
                          'MonitorFn',@CVodeMonitor,...
                          'MonitorData',mondata);

t0 = 0.0;
y0 = [1.0;0.0;0.0];
CVodeInit(@rhsfn, 'BDF', 'Newton', t0, y0, options);


optionsQ = CVodeQuadSetOptions('ErrControl',true,...
                               'RelTol',1.e-6,'AbsTol',1.e-6);

q0 = 0.0;
CVodeQuadInit(@quadfn, q0, optionsQ);

% ----------------------------------------
% Initialize ASA
% ----------------------------------------

CVodeAdjInit(150, 'Hermite');

% ----------------------------------------
% Forward integration
% ----------------------------------------

fprintf('Forward integration ');

tout = 4.e7;
[status,t,y,q] = CVode(tout,'Normal');
s = CVodeGetStats;
fprintf('(%d steps)\n',s.nst);
fprintf('G = %12.4e\n',q);


fprintf('\nCheck point info\n');

ck = CVodeGet('CheckPointsInfo');
fprintf(['    t0         t1     nstep  order  step size\n']); 
for i = 1:length(ck)
  fprintf('%8.3e  %8.3e  %4d     %1d   %10.5e\n',...
          ck(i).t0, ck(i).t1, ck(i).nstep, ck(i).order, ck(i).step);
end
fprintf('\n');

% ----------------------------------------
% Backward CVODES options
% ----------------------------------------

optionsB = CVodeSetOptions('UserData',data,...
                           'RelTol',1.e-6,...
                           'AbsTol',1.e-8,...
                           'LinearSolver','Dense',...
                           'JacobianFn',@djacBfn);

mondataB = struct;
mondataB.mode = 'both';
optionsB = CVodeSetOptions(optionsB,...
                           'MonitorFn','CVodeMonitorB',...
                           'MonitorData', mondataB);

tB1 = 4.e7;
yB1 = [0.0;0.0;0.0];
idxB = CVodeInitB(@rhsBfn, 'BDF', 'Newton', tB1, yB1, optionsB);

optionsQB = CVodeQuadSetOptions('ErrControl',true,...
                                'RelTol',1.e-6,'AbsTol',1.e-3);

qB1 = [0.0;0.0;0.0];
CVodeQuadInitB(idxB, @quadBfn, qB1, optionsQB);

% ----------------------------------------
% Backward integration
% ----------------------------------------

fprintf('Backward integration ');

[status,t,yB,qB] = CVodeB(t0,'Normal');
sB=CVodeGetStatsB(idxB);
fprintf('(%d steps)\n',sB.nst);

fprintf('tB1:        %12.4e\n',tB1);
fprintf('dG/dp:      %12.4e  %12.4e  %12.4e\n',...
        -qB(1)+yB(1), -qB(2)+yB(2), -qB(3)+yB(3));
fprintf('lambda(t0): %12.4e  %12.4e  %12.4e\n',...
        yB(1),yB(2),yB(3));

% ----------------------------------------
% Free memory
% ----------------------------------------

CVodeFree;

% ===========================================================================

function [yd, flag, new_data] = rhsfn(t, y, data)
% Right-hand side function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

yd(1) = -r1*y(1) + r2*y(2)*y(3);
yd(3) = r3*y(2)*y(2);
yd(2) = -yd(1) - yd(3);

flag = 0;
new_data = [];

return

% ===========================================================================

function [qd, flag, new_data] = quadfn(t, y, data)
% Forward quadrature integrand function

qd = y(3);

flag = 0;
new_data = [];

return

% ===========================================================================

function [J, flag, new_data] = djacfn(t, y, fy, data)
% Dense Jacobian function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

J(1,1) = -r1;
J(1,2) = r2*y(3);
J(1,3) = r2*y(2);

J(2,1) = r1;
J(2,2) = -r2*y(3) - 2*r3*y(2);
J(2,3) = -r2*y(2);

J(3,2) = 2*r3*y(2);

flag = 0;
new_data = [];

return

% ===========================================================================

function [yBd, flag, new_data] = rhsBfn(t, y, yB, data)
% Backward problem right-hand side function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

y1 = y(1);
y2 = y(2);
y3 = y(3);

l1 = yB(1);
l2 = yB(2);
l3 = yB(3);

l21 = l2-l1;
l32 = l3-l2;
y23 = y2*y3;

yBd(1) = - r1*l21;
yBd(2) = r2*y3*l21 - 2.0*r3*y2*l32;
yBd(3) = r2*y2*l21 - 1.0;

flag = 0;
new_data = [];

return

% ===========================================================================

function [qBd, flag, new_data] = quadBfn(t, y, yB, data)
% Backward problem quadrature integrand function

r1 = data.p(1);
r2 = data.p(2);
r3 = data.p(3);

y1 = y(1);
y2 = y(2);
y3 = y(3);

l1 = yB(1);
l2 = yB(2);
l3 = yB(3);

l21 = l2-l1;
l32 = l3-l2;
y23 = y2*y3;

qBd(1) = y1*l21;
qBd(2) = -y23*l21;
qBd(3) = l32*y2^2;

flag = 0;
new_data = [];

return

% ===========================================================================

function [JB, flag, new_data] = djacBfn(t, y, yB, fyB, data)
% Backward problem Jacobian function

J = djacfn(t,y,[],data);
JB = -J';

flag = 0;
new_data = [];

return