This file is indexed.

/usr/share/octave/site/m/sundialsTB/cvodes/examples_ser/mcvsAdvDiff_bnd.m is in octave-sundials 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function mcvsAdvDiff_bnd()
%mcvsAdvDiff_bnd - CVODES example problem (serial, band)
%   The following is a simple example problem with a banded Jacobian,
%   with the program for its solution by CVODES.
%   The problem is the semi-discrete form of the advection-diffusion
%   equation in 2-D:
%      du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
%   on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time
%   interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions
%   are posed, and the initial condition is
%      u(x,y,t=0) = x(2-x)y(1-y)exp(5xy).
%   The PDE is discretized on a uniform MX+2 by MY+2 grid with
%   central differencing, and with boundary values eliminated,
%   leaving an ODE system of size NEQ = MX*MY.
%   This program solves the problem with the BDF method, Newton
%   iteration with the CVBAND band linear solver, and a user-supplied
%   Jacobian routine.
%   It uses scalar relative and absolute tolerances.
%   Output is printed at t = .1, .2, ..., 1.
%   Run statistics (optional outputs) are printed at the end.

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision: 1.1 $Date: 2007/10/26 16:30:47 $

xmax = 2.0;
ymax = 1.0;
mx = 10;
my = 5;

rtol = 0.0;
atol = 1.0e-5;

t0 = 0.0;
dtout = 0.1;
nout = 6;

dx = xmax/(mx+1);
dy =  ymax/(my+1);

% Problem data structure
data.xmax = xmax;
data.ymax = ymax;
data.mx = mx;
data.my = my;
data.dx = dx;
data.dy = dy;
data.hdcoef = 1.0/dx^2;
data.hacoef = 0.5/(2.0*dx);
data.vdcoef = 1.0/dy^2;

% Options for integration
options = CVodeSetOptions('UserData',data,...
                          'RelTol',rtol,...
                          'AbsTol',atol,...
                          'LinearSolver','Band',...
                          'JacobianFn',@bjacfn,...
                          'UpperBwidth',my,...
                          'LowerBwidth',my);

mondata.grph = false;
options = CVodeSetOptions(options,...
                          'MonitorFn',@CVodeMonitor,...
                          'MonitorData',mondata);

% Initial conditions for states
t = t0;
u = zeros(mx*my,1);
for j = 1:my
  y = j * data.dy;
  for i = 1:mx
    x = i * data.dx;
    u(j + (i-1)*my) = x*(xmax-x)*y*(ymax-y)*exp(5.0*x*y);
  end
end

% Initialize integrator
CVodeInit(@rhsfn, 'BDF', 'Newton', t, u, options);

% Initialize quadratures (with default optional inputs)
q = 0.0;
CVodeQuadInit(@quadfn, q);


ff=figure;
hold on;
box

umax = norm(u,'inf');
uavg = quadfn(t,u,data);
fprintf('At t = %f   max.norm(u) = %e\n',t, umax);

for i = 1:nout

  t_old = t;
  uavg_old = uavg;

  tout = t + dtout;
  [status,t,u, q] = CVode(tout, 'Normal');

  if status ~= 0
    return
  end
  
  uavg = quadfn(t,u,data);
  umax = norm(u,'inf');
  fprintf('At t = %f   max.norm(u) = %e\n',tout, umax);

  figure(ff);
  plot([t_old t],[uavg_old uavg]);
  plot([t0 tout], [q q]/(tout-t0), 'r-');
  plot([tout tout], [0 q]/(tout-t0), 'r-');
  
end
  
si= CVodeGetStats

CVodeFree;

return

% ===========================================================================

function [ud, flag, new_data] = rhsfn(t, u, data)
% Right-hand side function

mx = data.mx;
my = data.my;
hordc = data.hdcoef;
horac = data.hacoef;
verdc = data.vdcoef;

for j = 1:my
  for i = 1:mx
    uij = u(j+(i-1)*my);
    if j == 1
      udn = 0.0;
    else
      udn = u(j-1+(i-1)*my);
    end
    if j == my
      uup = 0.0;
    else
      uup = u(j+1+(i-1)*my);
    end
    if i == 1
      ult = 0.0;
    else
      ult = u(j+(i-2)*my);
    end
    if i == mx
      urt = 0.0;
    else
      urt = u(j+i*my);
    end
    
    hdiff = hordc * (ult - 2*uij + urt);
    hadv = horac * (urt - ult);
    vdiff = verdc * (uup - 2*uij + udn);
    ud(j+(i-1)*my) = hdiff + hadv + vdiff;
  end
end

flag = 0;
new_data = [];

return

% ===========================================================================

function [qd, flag, new_data] = quadfn(t, u, data)
% Quadrature integrand function

mx = data.mx;
my = data.my;
dx = data.dx;
dy = data.dy;
xmax = data.xmax;
ymax = data.ymax;

qd1 = 0.0;
for j = 1:my
  for i = 1:mx
    uij = u(j+(i-1)*my);
    if j == 1 | j == mx
      del_y = dy/2;
    else
      del_y = dy;
    end
    if i == 1 | i == mx
      del_x = dx/2;
    else
      del_x = dx;
    end
    qd1 = qd1 + uij * del_x*del_y;
  end
end

qd1 = qd1 / (xmax*ymax);

qd(1) = qd1;

flag = 0;
new_data = [];

return

% ===========================================================================

function [J, flag, new_data] = bjacfn(t, y, fy, data)
% Band Jacobian function

mx = data.mx;
my = data.my;
hordc = data.hdcoef;
horac = data.hacoef;
verdc = data.vdcoef;

mu = my;
ml = my;
mband = mu + 1 + ml;

for i = 1:mx
  for j = 1:my
     k = j + (i-1)*my;
     J(mu+1,k) = -2.0 * (verdc + hordc);
     if  i ~= 1
       J(1,k) = hordc + horac;
     end
     if i ~= mx
       J(mband,k) = hordc - horac;
     end
     if j ~= 1
       J(mu,k) = verdc;
     end
     if j ~= my
       J(mu+2,k) = verdc;
     end
  end
end

flag = 0;
new_data = [];