This file is indexed.

/usr/share/octave/packages/signal-1.3.0/cheb2ord.m is in octave-signal 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{n}, @var{Wc}] =} cheb2ord (@var{Wp}, @var{Ws}, @var{Rp}, @var{Rs})
## @deftypefnx {Function File} {[@var{n}, @var{Wc}] =} cheb2ord ([@var{Wp1}, @var{Wp2}], [@var{Ws1}, @var{Ws2}], @var{Rp}, @var{Rs})
## Compute chebyshev type II filter order and cutoff for the desired response
## characteristics. Rp is the allowable decibels of ripple in the pass
## band. Rs is the minimum attenuation in the stop band.
##
## [n, Wc] = cheb2ord(Wp, Ws, Rp, Rs)
##     Low pass (Wp<Ws) or high pass (Wp>Ws) filter design.  Wp is the
##     pass band edge and Ws is the stop band edge.  Frequencies are
##     normalized to [0,1], corresponding to the range [0,Fs/2].
##
## [n, Wc] = cheb2ord([Wp1, Wp2], [Ws1, Ws2], Rp, Rs)
##     Band pass (Ws1<Wp1<Wp2<Ws2) or band reject (Wp1<Ws1<Ws2<Wp2)
##     filter design. Wp gives the edges of the pass band, and Ws gives
##     the edges of the stop band.
##
## Theory:
##
## @seealso{cheby2}
## @end deftypefn

function [n, Wc] = cheb2ord(Wp, Ws, Rp, Rs)

  if nargin != 4
    print_usage;
  elseif length(Wp) != length(Ws)
    error("cheb2ord: Wp and Ws must have the same length");
  elseif length(Wp) != 1 && length(Wp) != 2
    error("cheb2ord: Wp,Ws must have length 1 or 2");
  elseif length(Wp) == 2 && ...
          (all(Wp>Ws) || all(Ws>Wp) || diff(Wp)<=0 || diff(Ws)<=0)
    error("cheb2ord: Wp(1)<Ws(1)<Ws(2)<Wp(2) or Ws(1)<Wp(1)<Wp(2)<Ws(2)");
  endif

  T = 2;

  ## returned frequency is the same as the input frequency
  Wc = Ws;

  ## warp the target frequencies according to the bilinear transform
  Ws = (2/T)*tan(pi*Ws./T);
  Wp = (2/T)*tan(pi*Wp./T);

  if (Wp(1) < Ws(1))
    ## low pass
    if (length(Wp) == 1)
      Wa = Wp/Ws;
    else
      ## band reject
      error ("band reject is not implement yet.");
    endif;
  else
   ## if high pass, reverse the sense of the test
   if (length(Wp) == 1)
      Wa = Ws/Wp;
    else
      ## band pass
      Wa=(Wp.^2 - Ws(1)*Ws(2))./(Wp*(Ws(1)-Ws(2)));
    endif;
  endif;
  Wa = min(abs(Wa));

  ## compute minimum n which satisfies all band edge conditions
  stop_atten = 10^(abs(Rs)/10);
  pass_atten = 10^(abs(Rp)/10);
  n = ceil(acosh(sqrt((stop_atten-1)/(pass_atten-1)))/acosh(1/Wa));

endfunction

%!demo
%! Fs = 10000;
%! [n, Wc] = cheb2ord (1000/(Fs/2), 1200/(Fs/2), 0.5, 29);
%!
%! subplot (221);
%! plot ([0, 1000, 1000, 0, 0], [0, 0, -0.5, -0.5, 0], ";;");
%! hold on;
%! grid;
%! title("Pass band Wp=1000 Rp=0.0");
%! xlabel("Frequency (Hz)");
%! ylabel("Attenuation (dB)");
%! [b, a] = cheby2 (n, 29, Wc);
%! [h, w] = freqz (b, a, [], Fs);
%! plot (w, 20*log10(abs(h)), ";;");
%! axis ([ 0, 1500, -1, 0]);
%! hold off;
%!
%! subplot (222);
%! plot ([1200, Fs/2, Fs/2, 1200, 1200], [-29, -29, -500, -500, -29], ";;");
%! hold on;
%! axis ([ 0, Fs/2, -250, 0]);
%! title("Stop band Ws=1200 Rs=29");
%! xlabel("Frequency (Hz)");
%! ylabel("Attenuation (dB)");
%! grid;
%! [b, a] = cheby2 (n, 29, Wc);
%! [h, w] = freqz (b, a, [], Fs);
%! plot (w, 20*log10(abs(h)), ";;");
%! hold off;
%!
%! subplot (223);
%! plot ([0, 1000, 1000, 0, 0], [0, 0, -0.5, -0.5, 0], ";;");
%! hold on;
%! axis ([ 800, 1010, -0.6, -0.0]);
%! title("Pass band detail Wp=1000 Rp=0.5");
%! xlabel("Frequency (Hz)");
%! ylabel("Attenuation (dB)");
%! grid;
%! [b, a] = cheby2 (n, 29, Wc);
%! [h, w] = freqz (b, a, [800:1010], Fs);
%! plot (w, 20*log10(abs(h)), "r;filter n;");
%! [b, a] = cheby2 (n-1, 29, Wc);
%! [h, w] = freqz (b, a, [800:1010], Fs);
%! plot (w, 20*log10(abs(h)), "b;filter n-1;");
%! [b, a] = cheby2 (n+1, 29, Wc);
%! [h, w] = freqz (b, a, [800:1010], Fs);
%! plot (w, 20*log10(abs(h)), "g;filter n+1;");
%! hold off;
%!
%! subplot (224);
%! plot ([1200, Fs/2, Fs/2, 1200, 1200], [-29, -29, -500, -500, -29], ";;");
%! hold on;
%! axis ([ 1190, 1210, -40, -20]);
%! title("Stop band detail Wp=1200 Rp=29");
%! xlabel("Frequency (Hz)");
%! ylabel("Attenuation (dB)");
%! grid;
%! [b, a] = cheby2 (n, 29, Wc);
%! [h, w] = freqz (b, a, [1190:1210], Fs);
%! plot (w, 20*log10(abs(h)), "r;filter n;");
%! [b, a] = cheby2 (n-1, 29, Wc);
%! [h, w] = freqz (b, a, [1190:1210], Fs);
%! plot (w, 20*log10(abs(h)), "b;filter n-1;");
%! [b, a] = cheby2 (n+1, 29, Wc);
%! [h, w] = freqz (b, a, [1190:1210], Fs);
%! plot (w, 20*log10(abs(h)), "g;filter n+1;");
%! hold off;