This file is indexed.

/usr/share/octave/packages/image-2.2.2/im2col.m is in octave-image 2.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
## Copyright (C) 2013 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} im2col (@var{A}, @var{block_size})
## @deftypefnx {Function File} {} im2col (@var{A}, @var{block_size}, @var{block_type})
## @deftypefnx {Function File} {} im2col (@var{A}, "indexed", @dots{})
## Rearrange blocks from matrix into columns.
##
## Rearranges blocks of size @var{block_size}, sampled from the matrix @var{A},
## into a serie of columns.  This effectively transforms any image into a
## 2 dimensional matrix, a block per column, which can then be passed to
## other functions that perform calculations along columns.
##
## Both blocks and matrix @var{A} can have any number of dimensions (though
## for sliding blocks, a block can't be larger than @var{A} in any dimension).
## Blocks are always accessed in column-major order (like Octave arrays are
## stored) so that a matrix can be easily reconstructed with @code{reshape}
## and @code{col2im}. For a 2 dimensional matrix, blocks are taken first from
## the top to the bottom, and then from the left to the right of the matrix.
##
## The sampling can be performed in two different ways as defined by
## @var{block_type} (defaults to @qcode{"sliding"}):
##
## @table @asis
## @item @qcode{"distinct"}
## Each block is completely distinct from the other, with no overlapping
## elements.  The matrix @var{A} is padded as required with a value of 0
## (or 1 for non-integer indexed images).
##
## @item @qcode{"sliding"}
## A single block slides across @var{A} without any padding.
##
## While this can be used to perform sliding window operations such as maximum
## and median filters, specialized functions such as @code{imdilate} and
## @code{medfilt2} will be more efficient.
##
## Note that large images being arranged in large blocks can easily exceed the
## maximum matrix size (see @code{sizemax}).  For example, a matrix @var{A} of
## size 500x500, with sliding block of size [100 100], would require a matrix
## with 2.4108e+09 elements, i.e., the number of elements in a block,
## @code{100*100}, times the number of blocks, @code{(500-10+1) * (500-10+1)}.
##
## @end table
##
## If @var{A} is an indexed image, the second argument should be the
## string @qcode{"indexed"} so that any required padding is done correctly.
## The padding value will be 0 except for indexed images of class uint8
## and uint16.
##
## @seealso{blockproc, bestblk, col2im, colfilt, nlfilter, reshape}
## @end deftypefn

## Matlab behaves weird with N-dimensional images. It ignores block_size
## elements after the first 2, and treat N-dimensional as if the extra
## dimensions were concatenated horizontally. We are performing real
## N-dimensional conversion of image blocks into colums.

function B = im2col (A, varargin)

  ## Input check
  if (nargin > 4)
    print_usage ();
  endif
  [p, block_size, padval] = im2col_check ("im2col", nargin, A, varargin{:});
  if (nargin > p)
    ## we have block_type param
    if (! ischar (varargin{p}))
      error("im2col: BLOCK_TYPE must be a string");
    endif
    block_type = varargin{p++};
  else
    block_type = "sliding";
  endif
  if (nargin > p)
    print_usage ();
  endif

  ## After all the input check, start the actual im2col. The idea is to
  ## calculate the linear indices for each of the blocks (using broadcasting
  ## for each dimension), and then reshape it with one block per column.
  warning ("off", "Octave:broadcast", "local");

  switch (tolower (block_type))
    case "distinct"
      ## We may need to expand the size vector to include singletons
      size_singletons = @(x, ndim) postpad (size (x), ndim, 1);

      ## Calculate needed padding
      A_size = size_singletons (A, numel (block_size));
      sp = mod (-A_size, block_size);
      if (any (sp))
        A = padarray (A, sp, padval, "post");
      endif
      A_size = size_singletons (A, numel (block_size));

      ## Get linear indixes for the first block
      [ind, stride] = get_1st_ind (A_size, block_size);

      ## Get linear indices for all of the blocks
      blocks  = A_size ./ block_size;
      step    = stride .* block_size;
      limit   = step .* (blocks -1);
      for dim = 1:numel (A_size)
        ind = ind(:) .+ (0:step(dim):limit(dim));
      endfor
      n_blocks = prod (blocks);

    case "sliding"
      if (numel (block_size) > ndims (A))
        error ("im2col: BLOCK_SIZE can't have more elements than the dimensions of A");
      elseif (any (size (A) < block_size))
        error("im2col: no dimension of A can be greater than BLOCK_SIZE in sliding");
      endif

      ## Get linear indixes for the first block
      [ind, stride] = get_1st_ind (size (A), block_size);

      ## Get linear indices for all of the blocks
      slides  = size (A) - block_size;
      limit   = stride .* slides;
      for dim = 1:ndims (A)
        ind = ind(:) .+ (0:stride(dim):limit(dim));
      endfor
      n_blocks = prod (slides +1);

    otherwise
      error ("im2col: invalid BLOCK_TYPE `%s'.", block_type);
  endswitch

  B = reshape (A(ind(:)), prod (block_size), n_blocks);
endfunction

## Get linear indices and for the first block, and stride size per dimension
function [ind, stride] = get_1st_ind (A_size, block_size)
  stride = [1 cumprod(A_size(1:end-1))];
  limit = (block_size -1) .* stride;
  ind = 1;
  for dim = 1:numel (A_size)
    ind = ind(:) .+ (0:stride(dim):limit(dim));
  endfor
endfunction

%!demo
%! ## Divide A using distinct blocks and then reverse the operation
%! A = [ 1:10
%!      11:20
%!      21:30
%!      31:40];
%! B = im2col (A, [2 5], "distinct")
%! C = col2im (B, [2 5], [4 10], "distinct")

## test default block type
%!test
%! a = rand (10);
%! assert (im2col (a, [5 5]), im2col (a, [5 5], "sliding"))

## indexed makes no difference when sliding
%!test
%! a = rand (10);
%! assert (im2col (a, [5 5]), im2col (a, "indexed", [5 5]))

%!error <BLOCK_TYPE> im2col (rand (20), [2 5], 10)
%!error <BLOCK_TYPE> im2col (rand (20), [2 5], "wrong_block_type")
%!error <greater than> im2col (rand (10), [11 5], "sliding")
%!error im2col (rand (10), [5 5], "sliding", 5)
%!error im2col (rand (10), "indexed", [5 5], "sliding", 5)

%!shared B, A, Bs, As, Ap, Bp0, Bp1, Bp0_3s
%! v   = [1:10]';
%! r   = reshape (v, 2, 5);
%! B   = [v v+20  v+40 v+10  v+30 v+50];
%! A   = [r r+10; r+20 r+30; r+40 r+50];
%! As  = [ 1  2  3  4  5
%!         6  7  8  9 10
%!        11 12 13 14 15];
%! b1  = As(1:2, 1:4)(:);
%! b2  = As(2:3, 1:4)(:);
%! b3  = As(1:2, 2:5)(:);
%! b4  = As(2:3, 2:5)(:);
%! Bs  = [b1, b2, b3, b4];
%! Ap  = A(:, 1:9);
%! Bp1 = Bp0 = B;
%! Bp0(9:10, 4:6) = 0;
%! Bp1(9:10, 4:6) = 1;
%! Bp0_3s = Bp0;
%! Bp0_3s(11:30, :) = 0;

## test distinct block type
%!assert (im2col (A, [2 5], "distinct"), B);

## padding for distinct
%!assert (im2col (Ap, [2 5], "distinct"), Bp0);
%!assert (im2col (Ap, [2 5 3], "distinct"), Bp0_3s);
%!assert (im2col (Ap, "indexed", [2 5], "distinct"), Bp1);
%!assert (im2col (uint8  (Ap), "indexed", [2 5], "distinct"), uint8  (Bp0));
%!assert (im2col (uint16 (Ap), "indexed", [2 5], "distinct"), uint16 (Bp0));
%!assert (im2col (int16  (Ap), "indexed", [2 5], "distinct"), int16  (Bp1));
%!assert (im2col (uint32 (Ap), "indexed", [2 5], "distinct"), uint32 (Bp1));

## Always return correct class
%!assert (im2col (uint8   (A),  [2 5], "distinct"), uint8   (B));
%!assert (im2col (single  (A),  [2 5], "distinct"), single  (B));
%!assert (im2col (logical (A),  [2 5], "distinct"), logical (B));
%!assert (im2col (uint8   (As), [2 4], "sliding"),  uint8   (Bs));
%!assert (im2col (single  (As), [2 4], "sliding"),  single  (Bs));
%!assert (im2col (logical (As), [2 4], "sliding"),  logical (Bs));

## test sliding block type
%!assert (im2col (As, [2 4], "sliding"), Bs);
%!assert (im2col (As, [3 5], "sliding"), As(:));

## Test N-dimensional
%!test
%! A = randi (9, 10, 9, 5);
%!assert (convn (A, ones (3, 3, 3), "valid"),
%!        reshape (sum (im2col (A, [3 3 3])), [8 7 3]));
%!
%! A = randi (9, 10, 9, 5, 7);
%!assert (convn (A, ones (3, 3, 3), "valid"),
%!        reshape (sum (im2col (A, [3 3 3])), [8 7 3 7]));
%!assert (convn (A, ones (3, 4, 3), "valid"),
%!        reshape (sum (im2col (A, [3 4 3])), [8 6 3 7]));
%!assert (convn (A, ones (3, 5, 3, 2), "valid"),
%!        reshape (sum (im2col (A, [3 5 3 2])), [8 5 3 6]));