This file is indexed.

/usr/x86_64-w64-mingw32/lib/ocaml/set.ml is in ocaml-mingw-w64-x86-64 4.01.0~20140328-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

(* Sets over ordered types *)

module type OrderedType =
  sig
    type t
    val compare: t -> t -> int
  end

module type S =
  sig
    type elt
    type t
    val empty: t
    val is_empty: t -> bool
    val mem: elt -> t -> bool
    val add: elt -> t -> t
    val singleton: elt -> t
    val remove: elt -> t -> t
    val union: t -> t -> t
    val inter: t -> t -> t
    val diff: t -> t -> t
    val compare: t -> t -> int
    val equal: t -> t -> bool
    val subset: t -> t -> bool
    val iter: (elt -> unit) -> t -> unit
    val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
    val for_all: (elt -> bool) -> t -> bool
    val exists: (elt -> bool) -> t -> bool
    val filter: (elt -> bool) -> t -> t
    val partition: (elt -> bool) -> t -> t * t
    val cardinal: t -> int
    val elements: t -> elt list
    val min_elt: t -> elt
    val max_elt: t -> elt
    val choose: t -> elt
    val split: elt -> t -> t * bool * t
    val find: elt -> t -> elt
  end

module Make(Ord: OrderedType) =
  struct
    type elt = Ord.t
    type t = Empty | Node of t * elt * t * int

    (* Sets are represented by balanced binary trees (the heights of the
       children differ by at most 2 *)

    let height = function
        Empty -> 0
      | Node(_, _, _, h) -> h

    (* Creates a new node with left son l, value v and right son r.
       We must have all elements of l < v < all elements of r.
       l and r must be balanced and | height l - height r | <= 2.
       Inline expansion of height for better speed. *)

    let create l v r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Same as create, but performs one step of rebalancing if necessary.
       Assumes l and r balanced and | height l - height r | <= 3.
       Inline expansion of create for better speed in the most frequent case
       where no rebalancing is required. *)

    let bal l v r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      if hl > hr + 2 then begin
        match l with
          Empty -> invalid_arg "Set.bal"
        | Node(ll, lv, lr, _) ->
            if height ll >= height lr then
              create ll lv (create lr v r)
            else begin
              match lr with
                Empty -> invalid_arg "Set.bal"
              | Node(lrl, lrv, lrr, _)->
                  create (create ll lv lrl) lrv (create lrr v r)
            end
      end else if hr > hl + 2 then begin
        match r with
          Empty -> invalid_arg "Set.bal"
        | Node(rl, rv, rr, _) ->
            if height rr >= height rl then
              create (create l v rl) rv rr
            else begin
              match rl with
                Empty -> invalid_arg "Set.bal"
              | Node(rll, rlv, rlr, _) ->
                  create (create l v rll) rlv (create rlr rv rr)
            end
      end else
        Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Insertion of one element *)

    let rec add x = function
        Empty -> Node(Empty, x, Empty, 1)
      | Node(l, v, r, _) as t ->
          let c = Ord.compare x v in
          if c = 0 then t else
          if c < 0 then bal (add x l) v r else bal l v (add x r)

    let singleton x = Node(Empty, x, Empty, 1)

    (* Beware: those two functions assume that the added v is *strictly*
       smaller (or bigger) than all the present elements in the tree; it
       does not test for equality with the current min (or max) element.
       Indeed, they are only used during the "join" operation which
       respects this precondition.
    *)

    let rec add_min_element v = function
      | Empty -> singleton v
      | Node (l, x, r, h) ->
        bal (add_min_element v l) x r

    let rec add_max_element v = function
      | Empty -> singleton v
      | Node (l, x, r, h) ->
        bal l x (add_max_element v r)

    (* Same as create and bal, but no assumptions are made on the
       relative heights of l and r. *)

    let rec join l v r =
      match (l, r) with
        (Empty, _) -> add_min_element v r
      | (_, Empty) -> add_max_element v l
      | (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) ->
          if lh > rh + 2 then bal ll lv (join lr v r) else
          if rh > lh + 2 then bal (join l v rl) rv rr else
          create l v r

    (* Smallest and greatest element of a set *)

    let rec min_elt = function
        Empty -> raise Not_found
      | Node(Empty, v, r, _) -> v
      | Node(l, v, r, _) -> min_elt l

    let rec max_elt = function
        Empty -> raise Not_found
      | Node(l, v, Empty, _) -> v
      | Node(l, v, r, _) -> max_elt r

    (* Remove the smallest element of the given set *)

    let rec remove_min_elt = function
        Empty -> invalid_arg "Set.remove_min_elt"
      | Node(Empty, v, r, _) -> r
      | Node(l, v, r, _) -> bal (remove_min_elt l) v r

    (* Merge two trees l and r into one.
       All elements of l must precede the elements of r.
       Assume | height l - height r | <= 2. *)

    let merge t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)

    (* Merge two trees l and r into one.
       All elements of l must precede the elements of r.
       No assumption on the heights of l and r. *)

    let concat t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)

    (* Splitting.  split x s returns a triple (l, present, r) where
        - l is the set of elements of s that are < x
        - r is the set of elements of s that are > x
        - present is false if s contains no element equal to x,
          or true if s contains an element equal to x. *)

    let rec split x = function
        Empty ->
          (Empty, false, Empty)
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then (l, true, r)
          else if c < 0 then
            let (ll, pres, rl) = split x l in (ll, pres, join rl v r)
          else
            let (lr, pres, rr) = split x r in (join l v lr, pres, rr)

    (* Implementation of the set operations *)

    let empty = Empty

    let is_empty = function Empty -> true | _ -> false

    let rec mem x = function
        Empty -> false
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          c = 0 || mem x (if c < 0 then l else r)

    let rec remove x = function
        Empty -> Empty
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then merge l r else
          if c < 0 then bal (remove x l) v r else bal l v (remove x r)

    let rec union s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> t2
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          if h1 >= h2 then
            if h2 = 1 then add v2 s1 else begin
              let (l2, _, r2) = split v1 s2 in
              join (union l1 l2) v1 (union r1 r2)
            end
          else
            if h1 = 1 then add v1 s2 else begin
              let (l1, _, r1) = split v2 s1 in
              join (union l1 l2) v2 (union r1 r2)
            end

    let rec inter s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> Empty
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, false, r2) ->
              concat (inter l1 l2) (inter r1 r2)
          | (l2, true, r2) ->
              join (inter l1 l2) v1 (inter r1 r2)

    let rec diff s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, false, r2) ->
              join (diff l1 l2) v1 (diff r1 r2)
          | (l2, true, r2) ->
              concat (diff l1 l2) (diff r1 r2)

    type enumeration = End | More of elt * t * enumeration

    let rec cons_enum s e =
      match s with
        Empty -> e
      | Node(l, v, r, _) -> cons_enum l (More(v, r, e))

    let rec compare_aux e1 e2 =
        match (e1, e2) with
        (End, End) -> 0
      | (End, _)  -> -1
      | (_, End) -> 1
      | (More(v1, r1, e1), More(v2, r2, e2)) ->
          let c = Ord.compare v1 v2 in
          if c <> 0
          then c
          else compare_aux (cons_enum r1 e1) (cons_enum r2 e2)

    let compare s1 s2 =
      compare_aux (cons_enum s1 End) (cons_enum s2 End)

    let equal s1 s2 =
      compare s1 s2 = 0

    let rec subset s1 s2 =
      match (s1, s2) with
        Empty, _ ->
          true
      | _, Empty ->
          false
      | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
          let c = Ord.compare v1 v2 in
          if c = 0 then
            subset l1 l2 && subset r1 r2
          else if c < 0 then
            subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
          else
            subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2

    let rec iter f = function
        Empty -> ()
      | Node(l, v, r, _) -> iter f l; f v; iter f r

    let rec fold f s accu =
      match s with
        Empty -> accu
      | Node(l, v, r, _) -> fold f r (f v (fold f l accu))

    let rec for_all p = function
        Empty -> true
      | Node(l, v, r, _) -> p v && for_all p l && for_all p r

    let rec exists p = function
        Empty -> false
      | Node(l, v, r, _) -> p v || exists p l || exists p r

    let rec filter p = function
        Empty -> Empty
      | Node(l, v, r, _) ->
          (* call [p] in the expected left-to-right order *)
          let l' = filter p l in
          let pv = p v in
          let r' = filter p r in
          if pv then join l' v r' else concat l' r'

    let rec partition p = function
        Empty -> (Empty, Empty)
      | Node(l, v, r, _) ->
          (* call [p] in the expected left-to-right order *)
          let (lt, lf) = partition p l in
          let pv = p v in
          let (rt, rf) = partition p r in
          if pv
          then (join lt v rt, concat lf rf)
          else (concat lt rt, join lf v rf)

    let rec cardinal = function
        Empty -> 0
      | Node(l, v, r, _) -> cardinal l + 1 + cardinal r

    let rec elements_aux accu = function
        Empty -> accu
      | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l

    let elements s =
      elements_aux [] s

    let choose = min_elt

    let rec find x = function
        Empty -> raise Not_found
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then v
          else find x (if c < 0 then l else r)
  end