/usr/include/Wt/WGenericMatrix is in libwt-dev 3.3.3+dfsg-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | // This may look like C code, but it's really -*- C++ -*-
/*
* Copyright (C) 2010 Emweb bvba, Kessel-Lo, Belgium.
*
* See the LICENSE file for terms of use.
*/
#ifndef WGENERICMATRIX_H_
#define WGENERICMATRIX_H_
#include <Wt/WDllDefs.h>
#ifdef _MSC_VER
// Avoid 64-bit related warnings on MSVC
#pragma warning( push )
#pragma warning( disable : 4244 )
#pragma warning( disable : 4267 )
#endif
#define BOOST_SERIALIZATION_NO_LIB
#include <boost/numeric/ublas/matrix.hpp>
#ifdef _MSC_VER
#pragma warning( pop )
#endif
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/io.hpp>
namespace Wt {
/*! \class WGenericMatrix Wt/WGenericMatrix Wt/WGenericMatrix
* \brief A value class that describes a matrix
*
* This class represents a fixed-size dense (!= sparse) matrix. It
* can be templatized to the number of rows and columns, and to the
* datatype stored (integer types, floatin point types, complex types, ...)
*
* The row order of this matrix class is row-major. This means that when
* accessing the raw data store linearly, you will first encounter all
* elements of the first row, then the second row, and so on.
*
* This template class is used in Wt as base class for transformation
* matrices, but can also be used as a general matrix class. Efficiency
* for this use case was considered when this class was implemented, but
* we recommend that you use a more specialized matrix class library
* if the algorithms you need exceed what's offered here (for example,
* if you intend to do many linear algebra computations, you may
* consider boost ublass, MTL, ...).
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class WGenericMatrix
{
public:
typedef boost::numeric::ublas::bounded_matrix<T, Rows, Cols,
boost::numeric::ublas::row_major> MatrixType;
typedef typename boost::numeric::ublas::bounded_matrix<T, Rows, Cols,
boost::numeric::ublas::row_major>::array_type ArrayType;
/*! \brief Construct a identity matrix
*
* An identity matrix in this context is a matrix where m(i,i) = 1
* and m(i,j) = 0, for i != j.
*/
WGenericMatrix()
{
setToIdentity();
}
/*! \brief Copy Constructor
*/
WGenericMatrix(const WGenericMatrix<T, Rows, Cols> &other): m_(other.m_) {}
/*! \brief Constructs a matrix from an array of elements.
*
* The input array is assumed to be in row-major order. If elements is 0,
* the matrix data is not initialized.
*/
explicit WGenericMatrix(const T* elements)
{
if (elements) {
for(unsigned int i = 0; i < Rows; ++i)
for(unsigned int j = 0; j < Cols; ++j)
m_(i, j) = elements[i * Rows + j];
}
}
/*! \brief Returns a const pointer to the internal data store.
*
* The array can be indexed with []. You can iterate over the
* entire data store by using begin() and end() iterators. The
* row order of the data is row major.
*/
const ArrayType &constData() const { return m_.data(); }
/*! \brief Export the matrix data
*
* Stores the matrix in an array of Rows*Cols elements of type T,
* pointed to by data. The data will be stored in row major order.
*/
void copyDataTo(T *data)
{
for(unsigned int i = 0; i < Rows; ++i)
for (unsigned int j = 0; j < Cols; ++j)
data[i * Rows + j] = m_(i, j);
}
/*! \brief Returns a reference to the internal data store.
*
* The array can be indexed with []. You can iterate over the
* entire data store by using begin() and end() iterators. The
* row order of the data is row major.
*/
ArrayType &data() { return m_.data(); }
/*! \brief Returns a const reference to the internal data store.
*
* The array can be indexed with []. You can iterate over the
* entire data store by using begin() and end() iterators. The
* row order of the data is row major.
*/
const ArrayType &data() const { return m_.data(); }
/*! \brief Fills every element of the matrix with the given value
*/
void fill(T value)
{
for (unsigned i = 0; i < Rows * Cols; ++i)
m_.data()[i] = value;
}
/*! \brief Identity check.
*
* Returns true if the transform represents an identity transformation.
*/
bool isIdentity() const
{
using namespace boost::numeric::ublas;
identity_matrix<T> I(Rows > Cols ? Rows : Cols);
for(unsigned i = 0; i < Rows; ++i)
for (unsigned j = 0; j < Cols; ++j)
if (m_(i, j) != I(i, j))
return false;
return true;
}
/*! \brief Set this matrix to the identity matrix
*
* An identity matrix is in this context a matrix where m(i,i) = 1
* and m(i,j) = 0, for i != j.
*/
void setToIdentity()
{
#ifndef WT_TARGET_JAVA
using namespace boost::numeric::ublas;
m_ = project(identity_matrix<T>(Rows > Cols ? Rows : Cols),
range(0, Rows), range(0, Cols));
#endif
}
/*! \brief Returns the transposed of the matrix
*/
WGenericMatrix<T, Cols, Rows> transposed() const
{
return WGenericMatrix<T, Cols, Rows>(boost::numeric::ublas::trans(m_));
}
/*! \brief Equality operator.
*
* Returns \c true if the matrices are exactly the same.
*/
bool operator==(const WGenericMatrix<T, Rows, Cols>& rhs) const
{
for(unsigned i = 0; i < Rows; ++i)
for (unsigned j = 0; j < Cols; ++j)
if (rhs.m_(i, j) != m_(i, j))
return false;
return true;
}
/*! \brief Inequality operator.
*
* Returns \c true if the transforms are different.
*/
bool operator!=(const WGenericMatrix<T, Rows, Cols> &rhs) const {
return !(*this == rhs);
}
/*! \brief Returns the element at the given position
*/
const T &operator()(int row, int column) const
{
return m_(row, column);
}
/*! \brief Returns the element at the given position
*/
T &operator()(int row, int column) { return m_(row, column); }
/*! \brief Returns the element at the given position
*/
const T &at(int row, int column) const
{
return m_(row, column);
}
/*! \brief Returns the element at the given position
*/
T &at(int row, int column) { return m_(row, column); }
/*! \brief Multiply every element of the matrix with the given factor
*/
WGenericMatrix<T, Rows, Cols> &operator*=(const T &factor)
{
m_ *= factor;
return *this;
}
/*! \brief Divide every element of the matrix by the given factor
*/
WGenericMatrix<T, Rows, Cols> &operator/=(const T &factor)
{
m_ /= factor;
return *this;
}
/*! \brief Add the given matrix to this matrix
*/
WGenericMatrix<T, Rows, Cols> &operator+=(
const WGenericMatrix<T, Rows, Cols> &rhs)
{
m_ += rhs.m_;
return *this;
}
/*! \brief Substract the given matrix from this matrix
*/
WGenericMatrix<T, Rows, Cols> &operator-=(
const WGenericMatrix<T, Rows, Cols> &rhs)
{
m_ -= rhs.m_;
return *this;
}
MatrixType &impl() { return m_; }
const MatrixType &impl() const { return m_; }
WGenericMatrix(const MatrixType &m): m_(m) {}
private:
MatrixType m_;
};
/*! \brief Multiply two matrices
*/
template<typename T, std::size_t A, std::size_t B, std::size_t C>
inline WGenericMatrix<T, A, C> operator*(const WGenericMatrix<T, A, B> &l,
const WGenericMatrix<T, B, C> &r)
{
using namespace boost::numeric::ublas;
return prod(l.impl(), r.impl());
}
/*! \brief Print the matrix to an ostream
*/
template<typename T, std::size_t Rows, std::size_t Cols>
std::ostream &operator<<(std::ostream &os,
const WGenericMatrix<T, Rows, Cols> &m)
{
return os << m.impl();
}
/*! \brief Multiply every element in the matrix with the given factor
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator*(const T &factor,
const WGenericMatrix<T, Rows, Cols> &m)
{
return factor * m.impl();
}
/*! \brief Multiply every element in the matrix with the given factor
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator*(
const WGenericMatrix<T, Rows, Cols> &m, const T &factor)
{
return m.impl() * factor;
}
/*! \brief Divide every element in the matrix by the given factor
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator/(
const WGenericMatrix<T, Rows, Cols> &m, const T &factor)
{
return m.impl() / factor;
}
/*! \brief Add two matrices together
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator+(
const WGenericMatrix<T, Rows, Cols> &l,
const WGenericMatrix<T, Rows, Cols> &r)
{
return l.impl() + r.impl();
}
/*! \brief Substract two matrices
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator-(
const WGenericMatrix<T, Rows, Cols> &l,
const WGenericMatrix<T, Rows, Cols> &r)
{
return l.impl() - r.impl();
}
/*! \brief Negate every element in the matrix
*/
template<typename T, std::size_t Rows, std::size_t Cols>
inline WGenericMatrix<T, Rows, Cols> operator-(
const WGenericMatrix<T, Rows, Cols> &m)
{
return -m.impl();
}
}
#endif // WGENERICMATRIX_H_
|