This file is indexed.

/usr/include/libwildmagic/Wm5Matrix2.h is in libwildmagic-dev 5.13-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#ifndef WM5MATRIX2_H
#define WM5MATRIX2_H

// Rotation matrices are of the form
//   R = cos(t) -sin(t)
//       sin(t)  cos(t)
// where t > 0 indicates a counterclockwise rotation in the xy-plane.

#include "Wm5MathematicsLIB.h"
#include "Wm5Table.h"
#include "Wm5Vector2.h"

namespace Wm5
{

template <typename Real>
class Matrix2 : public Table<2,2,Real>
{
public:
    // If makeZero is 'true', create the zero matrix; otherwise, create the
    // identity matrix.
    Matrix2 (bool makeZero = true);

    // Copy constructor.
    Matrix2 (const Matrix2& mat);

    // Input mrc is in row r, column c.
    Matrix2 (Real m00, Real m01, Real m10, Real m11);

    // Create a matrix from an array of numbers.  The input array is
    // interpreted based on the bool input as
    //   true:  entry[0..3] = {m00,m01,m10,m11}  [row major]
    //   false: entry[0..3] = {m00,m10,m01,m11}  [column major]
    Matrix2 (const Real entry[4], bool rowMajor);

    // Create matrices based on vector input.  The bool is interpreted as
    //   true: vectors are columns of the matrix
    //   false: vectors are rows of the matrix
    Matrix2 (const Vector2<Real>& u, const Vector2<Real>& v,
        bool columns);
    Matrix2 (const Vector2<Real>* vectors, bool columns);

    // Create a diagonal matrix, m01 = m10 = 0.
    Matrix2 (Real m00, Real m11);

    // Create a rotation matrix (positive angle -> counterclockwise).
    Matrix2 (Real angle);

    // Create a tensor product U*V^T.
    Matrix2 (const Vector2<Real>& u, const Vector2<Real>& v);

    // Assignment.
    Matrix2& operator= (const Matrix2& mat);

    // Create various matrices.
    void MakeZero ();
    void MakeIdentity ();
    void MakeDiagonal (Real m00, Real m11);
    void MakeRotation (Real angle);
    void MakeTensorProduct (const Vector2<Real>& u, const Vector2<Real>& v);

    // Arithmetic operations.
    Matrix2 operator+ (const Matrix2& mat) const;
    Matrix2 operator- (const Matrix2& mat) const;
    Matrix2 operator* (Real scalar) const;
    Matrix2 operator/ (Real scalar) const;
    Matrix2 operator- () const;

    // Arithmetic updates.
    Matrix2& operator+= (const Matrix2& mat);
    Matrix2& operator-= (const Matrix2& mat);
    Matrix2& operator*= (Real scalar);
    Matrix2& operator/= (Real scalar);

    // M*vec
    Vector2<Real> operator* (const Vector2<Real>& vec) const;

    // u^T*M*v
    Real QForm (const Vector2<Real>& u, const Vector2<Real>& v) const;

    // M^T
    Matrix2 Transpose () const;

    // M*mat
    Matrix2 operator* (const Matrix2& mat) const;

    // M^T*mat
    Matrix2 TransposeTimes (const Matrix2& mat) const;

    // M*mat^T
    Matrix2 TimesTranspose (const Matrix2& mat) const;

    // M^T*mat^T
    Matrix2 TransposeTimesTranspose (const Matrix2& mat) const;

    // Other operations.
    Matrix2 Inverse (const Real epsilon = (Real)0) const;
    Matrix2 Adjoint () const;
    Real Determinant () const;

    // The matrix must be a rotation for these functions to be valid.  The
    // last function uses Gram-Schmidt orthonormalization applied to the
    // columns of the rotation matrix.  The angle must be in radians, not
    // degrees.
    void ExtractAngle (Real& angle) const;
    void Orthonormalize ();

    // The matrix must be symmetric.  Factor M = R * D * R^T where
    // R = [u0|u1] is a rotation matrix with columns u0 and u1 and
    // D = diag(d0,d1) is a diagonal matrix whose diagonal entries are d0
    // and d1.  The eigenvector u[i] corresponds to eigenvector d[i].  The
    // eigenvalues are ordered as d0 <= d1.
    void EigenDecomposition (Matrix2& rot, Matrix2& diag) const;

    // Special matrices.
    WM5_MATHEMATICS_ITEM static const Matrix2 ZERO;
    WM5_MATHEMATICS_ITEM static const Matrix2 IDENTITY;

protected:
    using Table<2,2,Real>::mEntry;
};

// c * M
template <typename Real>
inline Matrix2<Real> operator* (Real scalar, const Matrix2<Real>& mat);

// v^T * M
template <typename Real>
inline Vector2<Real> operator* (const Vector2<Real>& vec,
    const Matrix2<Real>& mat);

#include "Wm5Matrix2.inl"

typedef Matrix2<float> Matrix2f;
typedef Matrix2<double> Matrix2d;

}

#endif