/usr/include/libwildmagic/Wm5Delaunay3.h is in libwildmagic-dev 5.13-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2014/01/04)
#ifndef WM5DELAUNAY3_H
#define WM5DELAUNAY3_H
#include "Wm5MathematicsLIB.h"
#include "Wm5Delaunay1.h"
#include "Wm5Delaunay2.h"
#include "Wm5Query3.h"
#include "Wm5TSManifoldMesh.h"
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM Delaunay3 : public Delaunay<Real>
{
public:
// The input to the constructor is the array of vertices whose Delaunay
// tetrahedralization is required. If you want Delaunay3 to delete the
// vertices during destruction, set bOwner to 'true'. Otherwise, you
// own the vertices and must delete them yourself. Before using this
// class, you should "clean" your input points by removing duplicates.
//
// You have a choice of speed versus accuracy. The fastest choice is
// Query::QT_INT64, but it gives up a lot of precision, scaling the points
// to [0,2^{10}]^3. The choice Query::QT_INTEGER gives up less precision,
// scaling the points to [0,2^{20}]^3. The choice Query::QT_RATIONAL uses
// exact arithmetic, but is the slowest choice. The choice Query::QT_REAL
// uses floating-point arithmetic, but is not robust in all cases.
Delaunay3 (int numVertices, Vector3<Real>* vertices, Real epsilon,
bool owner, Query::Type queryType);
virtual ~Delaunay3 ();
// The input vertex array.
const Vector3<Real>* GetVertices () const;
// The number of unique vertices processed.
int GetNumUniqueVertices () const;
// If GetDimension() returns 1, then the points lie on a line. You must
// create a Delaunay1 object using the function provided.
const Vector3<Real>& GetLineOrigin () const;
const Vector3<Real>& GetLineDirection () const;
Delaunay1<Real>* GetDelaunay1 () const;
// If GetDimension() returns 2, then the points lie on a plane. The plane
// has two direction vectors (inputs 0 or 1). You must create a Delaunay2
// object using the function provided.
const Vector3<Real>& GetPlaneOrigin () const;
const Vector3<Real>& GetPlaneDirection (int i) const;
Delaunay2<Real>* GetDelaunay2 () const;
// Locate those tetrahedra faces that do not share other tetrahedra.
// The returned quantity is the number of triangles in the hull. The
// returned array has 3*quantity indices, each triple representing a
// triangle. The triangles are counterclockwise ordered when viewed
// from outside the hull. The return value is 'true' iff the dimension
// is 3.
bool GetHull (int& numTriangles, int*& indices) const;
// Support for searching the tetrahedralization for a tetrahedron that
// contains a point. If there is a containing tetrahedron, the returned
// value is a tetrahedron index i with 0 <= i < numTriangles. If there is
// not a containing tetrahedron, -1 is returned.
int GetContainingTetrahedron (const Vector3<Real>& p) const;
// If GetContainingTetrahedron returns a nonnegative value, the path of
// tetrahedra searched for the containing tetrahedra is stored in an
// array. The last index of the array is returned by GetPathLast; it is
// one less than the number of array elements. The array itself is
// returned by GetPath.
int GetPathLast () const;
const int* GetPath () const;
// If GetContainingTetrahedron returns -1, the path of tetrahedra
// searched may be obtained by GetPathLast and GetPath. The input point
// is outside a face of the last tetrahedron in the path. This function
// returns the vertex indices <v0,v1,v2> of the face, listed in
// counterclockwise order relative to the convex hull of the data points
// as viewed by an outside observer. The final output is the index of the
// vertex v3 opposite the face. The return value of the function is the
// index of the quadruple of vertex indices; the value is 0, 1, 2, or 3.
int GetLastFace (int& v0, int& v1, int& v2, int& v3) const;
// Get the vertices for tetrahedron i. The function returns 'true' if i
// is a valid tetrahedron index, in which case the vertices are valid.
// Otherwise, the function returns 'false' and the vertices are invalid.
bool GetVertexSet (int i, Vector3<Real> vertices[4]) const;
// Get the vertex indices for tetrahedron i. The function returns 'true'
// if i is a valid tetrahedron index, in which case the vertices are
// valid. Otherwise, the function returns 'false' and the vertices are
// invalid.
bool GetIndexSet (int i, int indices[4]) const;
// Get the indices for tetrahedra adjacent to tetrahedron i. The function
// returns 'true' if i is a valid tetrahedron index, in which case the
// adjacencies are valid. Otherwise, the function returns 'false' and
// the adjacencies are invalid.
bool GetAdjacentSet (int i, int adjacencies[4]) const;
// Compute the barycentric coordinates of P with respect to tetrahedron i.
// The function returns 'true' if i is a valid tetrahedron index, in which
// case the coordinates are valid. Otherwise, the function returns
// 'false' and the coordinate array is invalid.
bool GetBarycentricSet (int i, const Vector3<Real>& p, Real bary[4])
const;
// Support for streaming to/from disk.
Delaunay3 (const char* filename, int mode = FileIO::FM_DEFAULT_READ);
bool Load (const char* filename, int mode = FileIO::FM_DEFAULT_READ);
bool Save (const char* filename, int mode = FileIO::FM_DEFAULT_WRITE)
const;
private:
using Delaunay<Real>::mQueryType;
using Delaunay<Real>::mNumVertices;
using Delaunay<Real>::mDimension;
using Delaunay<Real>::mNumSimplices;
using Delaunay<Real>::mIndices;
using Delaunay<Real>::mAdjacencies;
using Delaunay<Real>::mEpsilon;
using Delaunay<Real>::mOwner;
typedef TSManifoldMesh::Tetrahedron Tetrahedron;
bool GetContainingTetrahedron (int i, Tetrahedron*& tetra) const;
void GetAndRemoveInsertionPolyhedron (int i,
std::set<Tetrahedron*>& candidates, std::set<TriangleKey>& boundary);
void Update (int i);
// The input vertices.
Vector3<Real>* mVertices;
// The number of unique vertices processed.
int mNumUniqueVertices;
// The scaled input vertices. This array and supporting data structures
// are for robust calculations.
Vector3<Real>* mSVertices;
Query3<Real>* mQuery;
Vector3<Real> mMin;
Real mScale;
// The current tetrahedralization.
TSManifoldMesh mTetraMesh;
// The line of containment if the dimension is 1.
Vector3<Real> mLineOrigin, mLineDirection;
// The plane of containment if the dimension is 2.
Vector3<Real> mPlaneOrigin, mPlaneDirection[2];
// Store the path of tetrahedra visited in a GetContainingTetrahedron
// function call.
mutable int mPathLast;
mutable int* mPath;
// If a query point is not in the convex hull of the input points, the
// point is outside a face of the last tetrahedron in the search path.
// These are the vertex indices for that face.
mutable int mLastFaceV0, mLastFaceV1, mLastFaceV2;
mutable int mLastFaceOpposite, mLastFaceOppositeIndex;
};
typedef Delaunay3<float> Delaunay3f;
typedef Delaunay3<double> Delaunay3d;
}
#endif
|