This file is indexed.

/usr/include/libwildmagic/Wm5Delaunay.h is in libwildmagic-dev 5.13-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/10/02)

#ifndef WM5DELAUNAY_H
#define WM5DELAUNAY_H

// The base class for Delaunay algorithms stores the number of mesh components
// and the connectivity information for the mesh.

#include "Wm5MathematicsLIB.h"
#include "Wm5FileIO.h"
#include "Wm5Query.h"

namespace Wm5
{

template <typename Real>
class WM5_MATHEMATICS_ITEM Delaunay
{
public:
    // Abstract base class.
    virtual ~Delaunay ();

    // Member accessors.  For notational purposes in this class documentation,
    // The number of vertices is VQ and the vertex array is V.
    Query::Type GetQueryType () const;
    int GetNumVertices () const;
    Real GetEpsilon () const;
    bool GetOwner () const;

    // The dimension of the result, call it d.  If n is the dimension of the
    // space of the input points, then 0 <= d <= n.
    int GetDimension () const;

    // The interpretations of the return values of these functions depends on
    // the dimension.  Generally, SQ = GetSimplexQuantity() is the number of
    // simplices in the mesh.  The array returned by I = GetIndices() contains
    // SQ tuples, each tuple having d+1 elements and representing a simplex.
    // An index I[*] is relative to the vertex array V.  The array returned by
    // A = GetAdjacencies() contains SQ tuples, each tuple having d+1 elements
    // and representing those simplices adjacent to the d+1 faces of a
    // simplex.  An index A[*] is relative to the index array I.
    int GetNumSimplices () const;
    const int* GetIndices () const;
    const int* GetAdjacencies () const;

    // Dimension d = 0.
    //   SQ = 1
    //   I  = null (use index zero for vertices)
    //   A  = null (use index zero for vertices)

    // Dimension d = 1.
    //   SQ = VQ-1
    //   I  = Array of 2-tuples of indices into V that represent the
    //        segments (2*SQ total elements).
    //   A  = Array of 2-tuples of indices into I that represent the
    //        adjacent segments (2*SQ total elements).
    // The i-th segment has vertices
    //   vertex[0] = V[I[2*i+0]]
    //   vertex[1] = V[I[2*i+1]].
    // The segments adjacent to these vertices have indices
    //   adjacent[0] = A[2*i+0] is the segment sharing vertex[0]
    //   adjacent[1] = A[2*i+1] is the segment sharing vertex[1]
    // If there is no adjacent segment, the A[*] value is set to -1.  The
    // segment adjacent to vertex[j] has vertices
    //   adjvertex[0] = V[I[2*adjacent[j]+0]]
    //   adjvertex[1] = V[I[2*adjacent[j]+1]]

    // Dimension d = 2.
    //   SQ = number of triangles
    //   I  = Array of 3-tuples of indices into V that represent the
    //        triangles (3*SQ total elements).
    //   A  = Array of 3-tuples of indices into I that represent the
    //        adjacent triangles (3*SQ total elements).
    // The i-th triangle has vertices
    //   vertex[0] = V[I[3*i+0]]
    //   vertex[1] = V[I[3*i+1]]
    //   vertex[2] = V[I[3*i+2]]
    // and edge index pairs
    //   edge[0] = <I[3*i+0],I[3*i+1]>
    //   edge[1] = <I[3*i+1],I[3*i+2]>
    //   edge[2] = <I[3*i+2],I[3*i+0]>
    // The triangles adjacent to these edges have indices
    //   adjacent[0] = A[3*i+0] is the triangle sharing edge[0]
    //   adjacent[1] = A[3*i+1] is the triangle sharing edge[1]
    //   adjacent[2] = A[3*i+2] is the triangle sharing edge[2]
    // If there is no adjacent triangle, the A[*] value is set to -1.  The
    // triangle adjacent to edge[j] has vertices
    //   adjvertex[0] = V[I[3*adjacent[j]+0]]
    //   adjvertex[1] = V[I[3*adjacent[j]+1]]
    //   adjvertex[2] = V[I[3*adjacent[j]+2]]

    // Dimension d = 3.
    //   SQ = number of tetrahedra
    //   I  = Array of 4-tuples of indices into V that represent the
    //        tetrahedra (4*SQ total elements).
    //   A  = Array of 4-tuples of indices into I that represent the
    //        adjacent tetrahedra (4*SQ total elements).
    // The i-th tetrahedron has vertices
    //   vertex[0] = V[I[4*i+0]]
    //   vertex[1] = V[I[4*i+1]]
    //   vertex[2] = V[I[4*i+2]]
    //   vertex[3] = V[I[4*i+3]]
    // and face index triples listed below.  The face vertex ordering when
    // viewed from outside the tetrahedron is counterclockwise.
    //   face[0] = <I[4*i+1],I[4*i+2],I[4*i+3]>
    //   face[1] = <I[4*i+0],I[4*i+3],I[4*i+2]>
    //   face[2] = <I[4*i+0],I[4*i+1],I[4*i+3]>
    //   face[3] = <I[4*i+0],I[4*i+2],I[4*i+1]>
    // The tetrahedra adjacent to these faces have indices
    //   adjacent[0] = A[4*i+0] is the tetrahedron opposite vertex[0], so it
    //                 is the tetrahedron sharing face[0].
    //   adjacent[1] = A[4*i+1] is the tetrahedron opposite vertex[1], so it
    //                 is the tetrahedron sharing face[1].
    //   adjacent[2] = A[4*i+2] is the tetrahedron opposite vertex[2], so it
    //                 is the tetrahedron sharing face[2].
    //   adjacent[3] = A[4*i+3] is the tetrahedron opposite vertex[3], so it
    //                 is the tetrahedron sharing face[3].
    // If there is no adjacent tetrahedron, the A[*] value is set to -1.  The
    // tetrahedron adjacent to face[j] has vertices
    //   adjvertex[0] = V[I[4*adjacent[j]+0]]
    //   adjvertex[1] = V[I[4*adjacent[j]+1]]
    //   adjvertex[2] = V[I[4*adjacent[j]+2]]
    //   adjvertex[3] = V[I[4*adjacent[j]+3]]

protected:
    // Abstract base class.  The number of vertices to be processed is
    // iVQuantity.  The value of fEpsilon is a tolerance used for determining
    // the intrinsic dimension of the input set of vertices.  Ownership of the
    // input points to the constructors for the derived classes may be
    // transferred to this class.  If you want the input vertices to be
    // deleted by this class, set bOwner to 'true'; otherwise, you own the
    // array and must delete it yourself.
    Delaunay (int numVertices, Real epsilon, bool owner,
        Query::Type queryType);

    // Support for streaming to/from disk.
    bool Load (FileIO& inFile);
    bool Save (FileIO& outFile) const;

    Query::Type mQueryType;
    int mNumVertices;
    int mDimension;
    int mNumSimplices;
    int* mIndices;
    int* mAdjacencies;
    Real mEpsilon;
    bool mOwner;
};

typedef Delaunay<float> Delaunayf;
typedef Delaunay<double> Delaunayd;

}

#endif