This file is indexed.

/usr/include/libwildmagic/Wm5ConvexPolyhedron3.inl is in libwildmagic-dev 5.13-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)

//----------------------------------------------------------------------------
template <typename Real>
ConvexPolyhedron3<Real>::ConvexPolyhedron3 (int numVertices,
    Vector3<Real>* vertices, int numTriangles, int* indices,
    NCPlane* planes)
    :
    Polyhedron3<Real>(numVertices, vertices, numTriangles, indices)
{
    if (planes)
    {
        mPlanes = planes;
    }
    else
    {
        mPlanes = new1<NCPlane>(mNumTriangles);
        UpdatePlanes();
    }
}
//----------------------------------------------------------------------------
template <typename Real>
ConvexPolyhedron3<Real>::ConvexPolyhedron3 (
    const ConvexPolyhedron3& polyhedron)
    :
    Polyhedron3<Real>(polyhedron)
{
    mPlanes = 0;
    *this = polyhedron;
}
//----------------------------------------------------------------------------
template <typename Real>
ConvexPolyhedron3<Real>::~ConvexPolyhedron3 ()
{
}
//----------------------------------------------------------------------------
template <typename Real>
ConvexPolyhedron3<Real>& ConvexPolyhedron3<Real>::operator= (
    const ConvexPolyhedron3& polyhedron)
{
    Polyhedron3<Real>::operator=(polyhedron);
    mPlanes = polyhedron.mPlanes;
    mSharingTriangles = polyhedron.mSharingTriangles;
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
const typename ConvexPolyhedron3<Real>::NCPlane*
ConvexPolyhedron3<Real>::GetPlanes () const
{
    return mPlanes;
}
//----------------------------------------------------------------------------
template <typename Real>
const typename ConvexPolyhedron3<Real>::NCPlane&
ConvexPolyhedron3<Real>::GetPlane (int i) const
{
    assertion(0 <= i && i < mNumTriangles, "Invalid index in GetPlane\n");
    return mPlanes[i];
}
//----------------------------------------------------------------------------
template <typename Real>
void ConvexPolyhedron3<Real>::SetVertex (int i, const Vector3<Real>& vertex)
{
    Polyhedron3<Real>::SetVertex(i, vertex);

    // Keep track of faces sharing this vertex.  Their planes need to be
    // updated later.
    const int* indices = mIndices;
    for (int j = 0; j < mNumTriangles; ++j)
    {
        int v0 = *indices++;
        int v1 = *indices++;
        int v2 = *indices++;
        if (i == v0 || i == v1 || i == v2)
        {
            mSharingTriangles.insert(j);
        }
    }
}
//----------------------------------------------------------------------------
template <typename Real>
void ConvexPolyhedron3<Real>::UpdatePlanes ()
{
    if (mSharingTriangles.size() > 0)
    {
        Vector3<Real> average = this->ComputeVertexAverage();
        for (int i = 0; i < mNumTriangles; ++i)
        {
            UpdatePlane(i, average);
        }
    }
}
//----------------------------------------------------------------------------
template <typename Real>
bool ConvexPolyhedron3<Real>::IsConvex (Real threshold) const
{
    Real maxDistance = -Math<Real>::MAX_REAL;
    Real minDistance = Math<Real>::MAX_REAL;

    for (int j = 0; j < mNumTriangles; ++j)
    {
        const NCPlane& plane = mPlanes[j];
        for (int i = 0; i < mNumVertices; ++i)
        {
            Real distance = plane.first.Dot(mVertices[i]) - plane.second;
            if (distance < minDistance)
            {
                minDistance = distance;
            }
            if (distance > maxDistance)
            {
                maxDistance = distance;
            }
            if (distance < threshold)
            {
                return false;
            }
        }
    }

    return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool ConvexPolyhedron3<Real>::Contains (const Vector3<Real>& p,
    Real threshold) const
{
    for (int i = 0; i < mNumTriangles; ++i)
    {
        const NCPlane& plane = mPlanes[i];
        Real distance = plane.first.Dot(p) - plane.second;
        if (distance < threshold)
        {
            return false;
        }
    }
    return true;
}
//----------------------------------------------------------------------------
template <typename Real>
void ConvexPolyhedron3<Real>::UpdatePlane (int i,
    const Vector3<Real>& average)
{
    int base = 3*i;
    int v0 = mIndices[base++];
    int v1 = mIndices[base++];
    int v2 = mIndices[base];

    Vector3<Real>& vertex0 = mVertices[v0];
    Vector3<Real>& vertex1 = mVertices[v1];
    Vector3<Real>& vertex2 = mVertices[v2];

    Vector3<Real> diff = average - vertex0;
    Vector3<Real> edge1 = vertex1 - vertex0;
    Vector3<Real> edge2 = vertex2 - vertex0;
    Vector3<Real> normal = edge2.Cross(edge1);
    Real length = normal.Length();
    if (length > Math<Real>::ZERO_TOLERANCE)
    {
        normal /= length;
        Real dot = normal.Dot(diff);
        assertion(dot >= (Real)0, "Dot product must be nonnegative\n");
        if (dot < (Real)0)
        {
            normal = -normal;
        }
    }
    else
    {
        // The triangle is degenerate.  Use a "normal" that points towards
        // the average.
        normal = diff;
        normal.Normalize();
    }

    // This plane has an inner-pointing normal.
    mPlanes[i].first = normal;
    mPlanes[i].second = normal.Dot(vertex0);
}
//----------------------------------------------------------------------------