/usr/include/libwildmagic/Wm5BSplineBasis.h is in libwildmagic-dev 5.13-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/12/11)
#ifndef WM5BSPLINEBASIS_H
#define WM5BSPLINEBASIS_H
#include "Wm5MathematicsLIB.h"
#include "Wm5Math.h"
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM BSplineBasis
{
public:
// Default constructor. The number of control points is n+1 and the
// indices i for the control points satisfy 0 <= i <= n. The degree of
// the curve is d. The knot array has n+d+2 elements. Whether uniform
// or nonuniform knots, it is required that
// knot[i] = 0, 0 <= i <= d
// knot[i] = 1, n+1 <= i <= n+d+1
// BSplineBasis enforces these conditions by not exposing SetKnot for the
// relevant values of i.
BSplineBasis ();
// Open uniform or periodic uniform. The knot array is internally
// generated with equally spaced elements. It is required that
// knot[i] = (i-d)/(n+1-d), d+1 <= i <= n
// BSplineBasis enforces these conditions by not exposing SetKnot for the
// relevant values of i. GetKnot(j) will return knot[i] for i = j+d+1.
BSplineBasis (int numCtrlPoints, int degree, bool open);
void Create (int numCtrlPoints, int degree, bool open);
// Open nonuniform. The interiorKnot array must have n-d nondecreasing
// elements in the interval [0,1]. The values are
// knot[i] = interiorKnot[j]
// with 0 <= j <= n-d-1 and i = j+d+1, so d+1 <= i <= n. The caller is
// responsible for interiorKnot if it was dynamically allocated. An
// internal copy is made, so to dynamically change knots you must use
// the SetKnot(j,*) function.
BSplineBasis (int numCtrlPoints, int degree, const Real* interiorKnot);
void Create (int numCtrlPoints, int degree, const Real* interiorKnot);
virtual ~BSplineBasis ();
int GetNumCtrlPoints () const;
int GetDegree () const;
bool IsOpen () const;
bool IsUniform () const;
// For a nonuniform spline, the knot[i] are modified by SetKnot(j,value)
// for j = i+d+1. That is, you specify j with 0 <= j <= n-d-1, i = j+d+1,
// and knot[i] = value. SetKnot(j,value) does nothing for indices outside
// the j-range or for uniform splines. GetKnot(j) returns knot[i]
// regardless of whether the spline is uniform or nonuniform.
void SetKnot (int j, Real knot);
Real GetKnot (int j) const;
// Access basis functions and their derivatives.
Real GetD0 (int i) const;
Real GetD1 (int i) const;
Real GetD2 (int i) const;
Real GetD3 (int i) const;
// Evaluate basis functions and their derivatives.
void Compute (Real t, unsigned int order, int& minIndex,
int& maxIndex) const;
protected:
int Initialize (int numCtrlPoints, int degree, bool open);
Real** Allocate () const;
void Deallocate (Real** data);
// Determine knot index i for which knot[i] <= rfTime < knot[i+1].
int GetKey (Real& t) const;
int mNumCtrlPoints; // n+1
int mDegree; // d
Real* mKnot; // knot[n+d+2]
bool mOpen, mUniform;
// Storage for the basis functions and their derivatives first three
// derivatives. The basis array is always allocated by the constructor
// calls. A derivative basis array is allocated on the first call to a
// derivative member function.
Real** mBD0; // bd0[d+1][n+d+1]
mutable Real** mBD1; // bd1[d+1][n+d+1]
mutable Real** mBD2; // bd2[d+1][n+d+1]
mutable Real** mBD3; // bd3[d+1][n+d+1]
};
typedef BSplineBasis<float> BSplineBasisf;
typedef BSplineBasis<double> BSplineBasisd;
}
#endif
|