/usr/include/wfmath-1.0/wfmath/quaternion.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | // quaternion.h (based on the Quaternion class from eris)
//
// The WorldForge Project
// Copyright (C) 2002 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_QUATERNION_H
#define WFMATH_QUATERNION_H
#include <wfmath/vector.h>
#include <wfmath/rotmatrix.h>
namespace WFMath {
/// A normalized quaterion
class Quaternion
{
public:
class Identity {};
///
Quaternion(const Identity &) : m_w(1), m_vec(), m_valid(true), m_age(0) {
m_vec.zero();
}
/// Construct a Quatertion
Quaternion () : m_w(0), m_vec(), m_valid(false), m_age(0) {}
/// Construct a Quaternion from (w, x, y, z) components
/**
* This normalizes the components so the sum of their squares is one.
**/
Quaternion (CoordType w_in, CoordType x_in, CoordType y_in, CoordType z_in);
/// Construct a Quaternion giving a rotation around axis by angle
Quaternion (int axis, CoordType angle) : m_w(0), m_vec(), m_valid(false),
m_age(0)
{rotation(axis, angle);}
/// Construct a Quaternion giving a rotation around the Vector axis by angle
Quaternion (const Vector<3>& axis, CoordType angle) : m_w(0), m_vec(),
m_valid(false),
m_age(0)
{rotation(axis, angle);}
/// Construct a Quaternion giving a rotation around the Vector axis
/**
* The angle of rotating is equal to the magnitude of the Vector
**/
explicit Quaternion (const Vector<3>& axis) : m_w(0), m_vec(),
m_valid(false), m_age(0)
{rotation(axis);} // angle == axis.mag()
/// Construct a copy of a Quaternion
Quaternion (const Quaternion& p) : m_w(p.m_w), m_vec(p.m_vec),
m_valid(p.m_valid), m_age(p.m_age) {}
/// Construct a Quaternion from an Atlas::Message::Object
explicit Quaternion (const AtlasInType& a) : m_w(0), m_vec(),
m_valid(false), m_age(0)
{fromAtlas(a);}
~Quaternion() {}
friend std::ostream& operator<<(std::ostream& os, const Quaternion& p);
friend std::istream& operator>>(std::istream& is, Quaternion& p);
/// Create an Atlas object from the Quaternion
AtlasOutType toAtlas() const;
/// Set the Quaternion's value to that given by an Atlas object
void fromAtlas(const AtlasInType& a);
Quaternion& operator= (const Quaternion& rhs)
{m_w = rhs.m_w; m_vec = rhs.m_vec; m_valid = rhs.m_valid; m_age = rhs.m_age; return *this;}
// This regards q and -1*q as equal, since they give the
// same RotMatrix<3>
bool isEqualTo(const Quaternion &q, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator== (const Quaternion& rhs) const {return isEqualTo(rhs);}
bool operator!= (const Quaternion& rhs) const {return !isEqualTo(rhs);}
bool isValid() const {return m_valid;}
/// Set the Quaternion to the identity rotation
Quaternion& identity() {m_w = 1; m_vec.zero(); m_valid = true; m_age = 0; return *this;} // Set to null rotation
// Operators
///
Quaternion& operator*= (const Quaternion& rhs);
///
Quaternion& operator/= (const Quaternion& rhs);
///
Quaternion operator* (const Quaternion& rhs) const {
Quaternion out(*this);
out *= rhs;
return out;
}
///
Quaternion operator/ (const Quaternion& rhs) const {
Quaternion out(*this);
out /= rhs;
return out;
}
// Functions
// Returns "not_flip", similar to RotMatrix<>.toEuler()
/// set a Quaternion's value from a RotMatrix
/**
* Since a Quaternion can only represent an even-parity
* RotMatrix, this function returns false if the parity of
* m is odd. In this case, the quaternion is set to the value
* of m multiplied by a fixed parity-odd RotMatrix, so
* the full RotMatrix can be recovered by passing
* the Quaternion and the value of 'not_flip' returned
* by this function to RotMatrix::fromQuaternion().
**/
bool fromRotMatrix(const RotMatrix<3>& m);
/// returns the inverse of the Quaternion
Quaternion inverse() const;
/// Rotate quaternion using the matrix.
Quaternion& rotate(const RotMatrix<3>&);
/// rotate the quaternion using another quaternion
Quaternion& rotate(const Quaternion& q) {return operator*=(q);}
/// sets the Quaternion to a rotation by angle around axis
Quaternion& rotation(int axis, CoordType angle);
/// sets the Quaternion to a rotation by angle around the Vector axis
Quaternion& rotation(const Vector<3>& axis, CoordType angle);
/// sets the Quaternion to a rotation around the Vector axis
/**
* The rotation angle is given by the magnitude of the Vector
**/
Quaternion& rotation(const Vector<3>& axis); // angle == axis.mag()
/// sets the Quaternion to rotate 'from' to be parallel to 'to'
Quaternion& rotation(const Vector<3>& from, const Vector<3>& to);
/// returns the scalar (w) part of the Quaternion
CoordType scalar() const {return m_w;}
/// returns the Vector (x, y, z) part of the quaternion
const Vector<3>& vector() const {return m_vec;}
/// normalize to remove accumulated round-off error
void normalize();
/// current round-off age
unsigned age() const {return m_age;}
private:
Quaternion(bool valid) : m_w(0), m_vec(), m_valid(valid), m_age(1) {}
void checkNormalization() {if(m_age >= WFMATH_MAX_NORM_AGE && m_valid) normalize();}
CoordType m_w;
Vector<3> m_vec;
bool m_valid;
unsigned m_age;
};
} // namespace WFMath
#endif // WFMATH_QUATERNION_H
|