This file is indexed.

/usr/include/wfmath-1.0/wfmath/point.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// point.h (point class copied from libCoal, subsequently modified)
//
//  The WorldForge Project
//  Copyright (C) 2000, 2001, 2002  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

// Author: Ron Steinke

#ifndef WFMATH_POINT_H
#define WFMATH_POINT_H

#include <wfmath/const.h>

#include <memory>
#include <iosfwd>

#include <cmath>

namespace WFMath {

template<int dim>
Point<dim>& operator+=(Point<dim>& p, const Vector<dim>& v);
template<int dim>
Point<dim>& operator-=(Point<dim>& p, const Vector<dim>& v);

template<int dim>
Vector<dim> operator-(const Point<dim>& c1, const Point<dim>& c2);
template<int dim>
Point<dim> operator+(const Point<dim>& c, const Vector<dim>& v);
template<int dim>
Point<dim> operator+(const Vector<dim>& v, const Point<dim>& c);
template<int dim>
Point<dim> operator-(const Point<dim>& c, const Vector<dim>& v);

template<int dim>
CoordType SquaredDistance(const Point<dim>& p1, const Point<dim>& p2);
template<int dim>
CoordType Distance(const Point<dim>& p1, const Point<dim>& p2)
  {return std::sqrt(SquaredDistance(p1, p2));}
template<int dim>
CoordType SloppyDistance(const Point<dim>& p1, const Point<dim>& p2)
  {return (p1 - p2).sloppyMag();}

/// Find the center of a set of points, all weighted equally
template<int dim, template<class, class> class container>
Point<dim> Barycenter(const container<Point<dim>, std::allocator<Point<dim> > >& c);
/// Find the center of a set of points with the given weights
/**
 * If the number of points and the number of weights are not equal,
 * the excess of either is ignored. The weights (or that subset
 * which is used, if there are more weights than points), must not
 * sum to zero.
 **/
template<int dim, template<class, class> class container,
      template<class, class> class container2>
Point<dim> Barycenter(const container<Point<dim>, std::allocator<Point<dim> > >& c,
          const container2<CoordType, std::allocator<CoordType> >& weights);

// This is used a couple of places in the library
template<int dim>
Point<dim> Midpoint(const Point<dim>& p1, const Point<dim>& p2,
        CoordType dist = 0.5);

template<int dim>
std::ostream& operator<<(std::ostream& os, const Point<dim>& m);
template<int dim>
std::istream& operator>>(std::istream& is, Point<dim>& m);

template<typename Shape>
class ZeroPrimitive;

/// A dim dimensional point
/**
 * This class implements the full shape interface, as described in
 * the fake class Shape.
 **/
template<int dim = 3>
class Point
{
 friend class ZeroPrimitive<Point<dim> >;
 public:
  /// Construct an uninitialized point
  Point () : m_valid(false) {}
  /// Construct a copy of a point
  Point (const Point& p);
  /// Construct a point from an object passed by Atlas
  explicit Point (const AtlasInType& a);
  /// Construct a point from a vector.
  explicit Point(const Vector<dim>& vector);

  /**
   * @brief Provides a global instance preset to zero.
   */
  static const Point<dim>& ZERO();

  friend std::ostream& operator<< <dim>(std::ostream& os, const Point& p);
  friend std::istream& operator>> <dim>(std::istream& is, Point& p);

  /// Create an Atlas object from the point
  AtlasOutType toAtlas() const;
  /// Set the point's value to that given by an Atlas object
  void fromAtlas(const AtlasInType& a);

  Point& operator= (const Point& rhs);

  bool isEqualTo(const Point &p, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
  bool operator== (const Point& rhs) const	{return isEqualTo(rhs);}
  bool operator!= (const Point& rhs) const	{return !isEqualTo(rhs);}

  bool isValid() const {return m_valid;}
  /// make isValid() return true if you've initialized the point by hand
  void setValid(bool valid = true) {m_valid = valid;}

  /// Set point to (0,0,...,0)
  Point& setToOrigin();

  // Operators

  // Documented in vector.h
  friend Vector<dim> operator-<dim>(const Point& c1, const Point& c2);
  friend Point operator+<dim>(const Point& c, const Vector<dim>& v);
  friend Point operator-<dim>(const Point& c, const Vector<dim>& v);
  friend Point operator+<dim>(const Vector<dim>& v, const Point& c);

  friend Point& operator+=<dim>(Point& p, const Vector<dim>& rhs);
  friend Point& operator-=<dim>(Point& p, const Vector<dim>& rhs);

  /// Rotate about point p
  Point& rotate(const RotMatrix<dim>& m, const Point& p)
  {return (*this = p + Prod(*this - p, m));}

  // Functions so that Point<> has the generic shape interface

  size_t numCorners() const {return 1;}
  Point<dim> getCorner(size_t) const { return *this;}
  Point<dim> getCenter() const {return *this;}

  Point shift(const Vector<dim>& v) {return *this += v;}
  Point moveCornerTo(const Point& p, size_t)
  {return operator=(p);}
  Point moveCenterTo(const Point& p) {return operator=(p);}

  Point& rotateCorner(const RotMatrix<dim>&, size_t)
  {return *this;}
  Point& rotateCenter(const RotMatrix<dim>&) {return *this;}
  Point& rotatePoint(const RotMatrix<dim>& m, const Point& p) {return rotate(m, p);}

  // 3D rotation functions
  Point& rotate(const Quaternion& q, const Point& p);
  Point& rotateCorner(const Quaternion&, size_t)
  { return *this;}
  Point& rotateCenter(const Quaternion&) {return *this;}
  Point& rotatePoint(const Quaternion& q, const Point& p);

  // The implementations of these lie in axisbox_funcs.h and
  // ball_funcs.h, to reduce include dependencies
  AxisBox<dim> boundingBox() const;
  Ball<dim> boundingSphere() const;
  Ball<dim> boundingSphereSloppy() const;

  Point toParentCoords(const Point& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
  {return origin + (*this - Point().setToOrigin()) * rotation;}
  Point toParentCoords(const AxisBox<dim>& coords) const;
  Point toParentCoords(const RotBox<dim>& coords) const;

  // toLocal is just like toParent, expect we reverse the order of
  // translation and rotation and use the opposite sense of the rotation
  // matrix

  Point toLocalCoords(const Point& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
  {return Point().setToOrigin() + rotation * (*this - origin);}
  Point toLocalCoords(const AxisBox<dim>& coords) const;
  Point toLocalCoords(const RotBox<dim>& coords) const;

  // 3D only
  Point toParentCoords(const Point& origin, const Quaternion& rotation) const;
  Point toLocalCoords(const Point& origin, const Quaternion& rotation) const;

  // Member access

  /// Access the i'th coordinate of the point
  CoordType operator[](const int i) const {return m_elem[i];}
  /// Access the i'th coordinate of the point
  CoordType& operator[](const int i)	  {return m_elem[i];}

  /// Get the square of the distance from p1 to p2
  friend CoordType SquaredDistance<dim>(const Point& p1, const Point& p2);

// FIXME instatiation problem when declared as friend
//  template<template<class> class container>
//  friend Point Barycenter(const container<Point>& c);

  /// Find a point on the line containing p1 and p2, by default the midpoint
  /**
   * The default value of 0.5 for dist gives the midpoint. A value of 0 gives
   * p1, and 1 gives p2. Values of dist outside the [0, 1] range are allowed,
   * and give points on the line which are not on the segment bounded by
   * p1 and p2.
   **/
  friend Point<dim> Midpoint<dim>(const Point& p1, const Point& p2, CoordType dist);

  // 2D/3D stuff

  /// 2D only: construct a point from its (x, y) coordinates
  Point (CoordType x, CoordType y); // 2D only
  /// 3D only: construct a point from its (x, y, z) coordinates
  Point (CoordType x, CoordType y, CoordType z); // 3D only

  // Label the first three components of the vector as (x,y,z) for
  // 2D/3D convienience

  /// access the first component of a point
  CoordType x() const	{return m_elem[0];}
  /// access the first component of a point
  CoordType& x()	{return m_elem[0];}
  /// access the second component of a point
  CoordType y() const	{return m_elem[1];}
  /// access the second component of a point
  CoordType& y()	{return m_elem[1];}
  /// access the third component of a point
  CoordType z() const;
  /// access the third component of a point
  CoordType& z();

  /// 2D only: construct a vector from polar coordinates
  Point& polar(CoordType r, CoordType theta);
  /// 2D only: convert a vector to polar coordinates
  void asPolar(CoordType& r, CoordType& theta) const;

  /// 3D only: construct a vector from polar coordinates
  Point& polar(CoordType r, CoordType theta, CoordType z);
  /// 3D only: convert a vector to polar coordinates
  void asPolar(CoordType& r, CoordType& theta, CoordType& z) const;
  /// 3D only: construct a vector from spherical coordinates
  Point& spherical(CoordType r, CoordType theta, CoordType phi);
  /// 3D only: convert a vector to spherical coordinates
  void asSpherical(CoordType& r, CoordType& theta, CoordType& phi) const;

  const CoordType* elements() const {return m_elem;}

 private:
  CoordType m_elem[dim];
  bool m_valid;
};

template<>
inline CoordType Point<3>::z() const
{
  return m_elem[2];
}

template<>
inline CoordType& Point<3>::z()
{
  return m_elem[2];
}

template<int dim>
inline Point<dim> operator+(const Point<dim>& c, const Vector<dim>& v)
{
  Point<dim> out(c);

  out += v;

  return out;
}

template<int dim>
inline Point<dim> operator+(const Vector<dim>& v, const Point<dim>& c)
{
  Point<dim> out(c);

  out += v;

  return out;
}

template<int dim>
inline Point<dim> operator-(const Point<dim>& c, const Vector<dim>& v)
{
  Point<dim> out(c);

  out -= v;

  return out;
}

template<>
inline Point<2>::Point(CoordType x, CoordType y) : m_valid(true)
{
  m_elem[0] = x;
  m_elem[1] = y;
}

template<>
inline Point<3>::Point(CoordType x, CoordType y, CoordType z) : m_valid(true)
{
  m_elem[0] = x;
  m_elem[1] = y;
  m_elem[2] = z;
}

} // namespace WFMath

#endif  // WFMATH_POINT_H