This file is indexed.

/usr/include/wfmath-1.0/wfmath/ball.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// ball.h (A n-dimensional ball)
//
//  The WorldForge Project
//  Copyright (C) 2000, 2001  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

// Author: Ron Steinke

#ifndef WFMATH_BALL_H
#define WFMATH_BALL_H

#include <wfmath/point.h>
#include <wfmath/intersect_decls.h>

namespace WFMath {

template<int dim> class Ball;

/// get the minimal bounding sphere for a set of points
template<int dim, template<class, class> class container>
Ball<dim> BoundingSphere(const container<Point<dim>, std::allocator<Point<dim> > >& c);
/// get a bounding sphere for a set of points
template<int dim, template<class, class> class container>
Ball<dim> BoundingSphereSloppy(const container<Point<dim>, std::allocator<Point<dim> > >& c);

template<int dim>
std::ostream& operator<<(std::ostream& os, const Ball<dim>& m);
template<int dim>
std::istream& operator>>(std::istream& is, Ball<dim>& m);

/// A dim dimensional ball
/**
 * This class implements the full shape interface, as described in
 * the fake class Shape.
 *
 * This class is called Ball<> instead of Sphere to be more in tune
 * with the usual mathematical naming conventions, where a ball is
 * a filled object, while a sphere is just the outer shell. It also
 * helps that a Ball<n> corresponds to an n-ball, while a Sphere<n>
 * would correspond to an (n-1)-sphere.
 **/
template<int dim = 3>
class Ball
{
 public:
  /// construct an uninitialized ball
  Ball() : m_center(), m_radius(0.f) {}
  /// construct a ball with the given center and radius
  Ball(const Point<dim>& center, CoordType radius)
  : m_center(center), m_radius(radius) { if (radius < 0) m_center.setValid(false); }
  /// construct a copy of a ball
  Ball(const Ball& b) : m_center(b.m_center), m_radius(b.m_radius) {}
  /// Construct a ball from an object passed by Atlas
  explicit Ball(const AtlasInType& a);

  ~Ball() {}

  friend std::ostream& operator<< <dim>(std::ostream& os, const Ball& b);
  friend std::istream& operator>> <dim>(std::istream& is, Ball& b);

  /// Create an Atlas object from the box
  AtlasOutType toAtlas() const;
  /// Set the box's value to that given by an Atlas object
  void fromAtlas(const AtlasInType& a);

  Ball& operator=(const Ball& b)
  {m_radius = b.m_radius; m_center = b.m_center; return *this;}

  bool isEqualTo(const Ball& b, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;

  bool operator==(const Ball& b) const	{return isEqualTo(b);}
  bool operator!=(const Ball& b) const	{return !isEqualTo(b);}

  bool isValid() const {return m_center.isValid();}

  // Descriptive characteristics

  size_t numCorners() const {return 0;}
  // This next function exists so that Ball can be used by code
  // that finds the number of corners with numCorners(), and does something
  // with each corner with getCorner(). No idea how useful that is, but
  // it's not a particularly complicated function to write.
  Point<dim> getCorner(size_t) const {return m_center;}
  Point<dim> getCenter() const {return m_center;}

  /// get the center of the ball
  const Point<dim>& center() const {return m_center;}
  /// get the center of the ball
  Point<dim>& center() {return m_center;}
  /// get the radius of the ball
  CoordType radius() const {return m_radius;}
  /// get the radius of the ball
  CoordType& radius() {return m_radius;}

  // Movement functions

  Ball& shift(const Vector<dim>& v) {m_center += v; return *this;}
  Ball& moveCornerTo(const Point<dim>&, size_t) {return *this;}
  Ball& moveCenterTo(const Point<dim>& p) {m_center = p; return *this;}

  Ball& rotateCorner(const RotMatrix<dim>&, size_t) {return *this;}
  Ball& rotateCenter(const RotMatrix<dim>&) {return *this;}
  Ball& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
  {m_center.rotate(m, p); return *this;}

  // 3D rotation function
  Ball& rotateCorner(const Quaternion&, size_t corner);
  Ball& rotateCenter(const Quaternion&);
  Ball& rotatePoint(const Quaternion& q, const Point<dim>& p);

  // Intersection functions

  AxisBox<dim> boundingBox() const;
  Ball boundingSphere() const		{return *this;}
  Ball boundingSphereSloppy() const	{return *this;}

  Ball toParentCoords(const Point<dim>& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
        {return Ball(m_center.toParentCoords(origin, rotation), m_radius);}
  Ball toParentCoords(const AxisBox<dim>& coords) const
        {return Ball(m_center.toParentCoords(coords), m_radius);}
  Ball toParentCoords(const RotBox<dim>& coords) const
        {return Ball(m_center.toParentCoords(coords), m_radius);}

  // toLocal is just like toParent, expect we reverse the order of
  // translation and rotation and use the opposite sense of the rotation
  // matrix

  Ball toLocalCoords(const Point<dim>& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
        {return Ball(m_center.toLocalCoords(origin, rotation), m_radius);}
  Ball toLocalCoords(const AxisBox<dim>& coords) const
        {return Ball(m_center.toLocalCoords(coords), m_radius);}
  Ball toLocalCoords(const RotBox<dim>& coords) const
        {return Ball(m_center.toLocalCoords(coords), m_radius);}

  // 3D only
  Ball toParentCoords(const Point<dim>& origin, const Quaternion& rotation) const;
  Ball toLocalCoords(const Point<dim>& origin, const Quaternion& rotation) const;

  friend bool Intersect<dim>(const Ball& b, const Point<dim>& p, bool proper);
  friend bool Contains<dim>(const Point<dim>& p, const Ball& b, bool proper);

  friend bool Intersect<dim>(const Ball& b, const AxisBox<dim>& a, bool proper);
  friend bool Contains<dim>(const Ball& b, const AxisBox<dim>& a, bool proper);
  friend bool Contains<dim>(const AxisBox<dim>& a, const Ball& b, bool proper);

  friend bool Intersect<dim>(const Ball& b1, const Ball& b2, bool proper);
  friend bool Contains<dim>(const Ball& outer, const Ball& inner, bool proper);

  friend bool Intersect<dim>(const Segment<dim>& s, const Ball& b, bool proper);
  friend bool Contains<dim>(const Segment<dim>& s, const Ball& b, bool proper);

  friend bool Intersect<dim>(const RotBox<dim>& r, const Ball& b, bool proper);
  friend bool Contains<dim>(const RotBox<dim>& r, const Ball& b, bool proper);
  friend bool Contains<dim>(const Ball& b, const RotBox<dim>& r, bool proper);

  friend bool Intersect<dim>(const Polygon<dim>& p, const Ball& b, bool proper);
  friend bool Contains<dim>(const Polygon<dim>& p, const Ball& b, bool proper);
  friend bool Contains<dim>(const Ball& b, const Polygon<dim>& p, bool proper);

 private:

  Point<dim> m_center;
  CoordType m_radius;
};

template<int dim>
inline bool Ball<dim>::isEqualTo(const Ball<dim>& b, CoordType epsilon) const
{
  return Equal(m_center, b.m_center, epsilon)
      && Equal(m_radius, b.m_radius, epsilon);
}

} // namespace WFMath

#endif  // WFMATH_BALL_H