/usr/include/wfmath-1.0/wfmath/ball.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | // ball.h (A n-dimensional ball)
//
// The WorldForge Project
// Copyright (C) 2000, 2001 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_BALL_H
#define WFMATH_BALL_H
#include <wfmath/point.h>
#include <wfmath/intersect_decls.h>
namespace WFMath {
template<int dim> class Ball;
/// get the minimal bounding sphere for a set of points
template<int dim, template<class, class> class container>
Ball<dim> BoundingSphere(const container<Point<dim>, std::allocator<Point<dim> > >& c);
/// get a bounding sphere for a set of points
template<int dim, template<class, class> class container>
Ball<dim> BoundingSphereSloppy(const container<Point<dim>, std::allocator<Point<dim> > >& c);
template<int dim>
std::ostream& operator<<(std::ostream& os, const Ball<dim>& m);
template<int dim>
std::istream& operator>>(std::istream& is, Ball<dim>& m);
/// A dim dimensional ball
/**
* This class implements the full shape interface, as described in
* the fake class Shape.
*
* This class is called Ball<> instead of Sphere to be more in tune
* with the usual mathematical naming conventions, where a ball is
* a filled object, while a sphere is just the outer shell. It also
* helps that a Ball<n> corresponds to an n-ball, while a Sphere<n>
* would correspond to an (n-1)-sphere.
**/
template<int dim = 3>
class Ball
{
public:
/// construct an uninitialized ball
Ball() : m_center(), m_radius(0.f) {}
/// construct a ball with the given center and radius
Ball(const Point<dim>& center, CoordType radius)
: m_center(center), m_radius(radius) { if (radius < 0) m_center.setValid(false); }
/// construct a copy of a ball
Ball(const Ball& b) : m_center(b.m_center), m_radius(b.m_radius) {}
/// Construct a ball from an object passed by Atlas
explicit Ball(const AtlasInType& a);
~Ball() {}
friend std::ostream& operator<< <dim>(std::ostream& os, const Ball& b);
friend std::istream& operator>> <dim>(std::istream& is, Ball& b);
/// Create an Atlas object from the box
AtlasOutType toAtlas() const;
/// Set the box's value to that given by an Atlas object
void fromAtlas(const AtlasInType& a);
Ball& operator=(const Ball& b)
{m_radius = b.m_radius; m_center = b.m_center; return *this;}
bool isEqualTo(const Ball& b, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const Ball& b) const {return isEqualTo(b);}
bool operator!=(const Ball& b) const {return !isEqualTo(b);}
bool isValid() const {return m_center.isValid();}
// Descriptive characteristics
size_t numCorners() const {return 0;}
// This next function exists so that Ball can be used by code
// that finds the number of corners with numCorners(), and does something
// with each corner with getCorner(). No idea how useful that is, but
// it's not a particularly complicated function to write.
Point<dim> getCorner(size_t) const {return m_center;}
Point<dim> getCenter() const {return m_center;}
/// get the center of the ball
const Point<dim>& center() const {return m_center;}
/// get the center of the ball
Point<dim>& center() {return m_center;}
/// get the radius of the ball
CoordType radius() const {return m_radius;}
/// get the radius of the ball
CoordType& radius() {return m_radius;}
// Movement functions
Ball& shift(const Vector<dim>& v) {m_center += v; return *this;}
Ball& moveCornerTo(const Point<dim>&, size_t) {return *this;}
Ball& moveCenterTo(const Point<dim>& p) {m_center = p; return *this;}
Ball& rotateCorner(const RotMatrix<dim>&, size_t) {return *this;}
Ball& rotateCenter(const RotMatrix<dim>&) {return *this;}
Ball& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
{m_center.rotate(m, p); return *this;}
// 3D rotation function
Ball& rotateCorner(const Quaternion&, size_t corner);
Ball& rotateCenter(const Quaternion&);
Ball& rotatePoint(const Quaternion& q, const Point<dim>& p);
// Intersection functions
AxisBox<dim> boundingBox() const;
Ball boundingSphere() const {return *this;}
Ball boundingSphereSloppy() const {return *this;}
Ball toParentCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return Ball(m_center.toParentCoords(origin, rotation), m_radius);}
Ball toParentCoords(const AxisBox<dim>& coords) const
{return Ball(m_center.toParentCoords(coords), m_radius);}
Ball toParentCoords(const RotBox<dim>& coords) const
{return Ball(m_center.toParentCoords(coords), m_radius);}
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
Ball toLocalCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return Ball(m_center.toLocalCoords(origin, rotation), m_radius);}
Ball toLocalCoords(const AxisBox<dim>& coords) const
{return Ball(m_center.toLocalCoords(coords), m_radius);}
Ball toLocalCoords(const RotBox<dim>& coords) const
{return Ball(m_center.toLocalCoords(coords), m_radius);}
// 3D only
Ball toParentCoords(const Point<dim>& origin, const Quaternion& rotation) const;
Ball toLocalCoords(const Point<dim>& origin, const Quaternion& rotation) const;
friend bool Intersect<dim>(const Ball& b, const Point<dim>& p, bool proper);
friend bool Contains<dim>(const Point<dim>& p, const Ball& b, bool proper);
friend bool Intersect<dim>(const Ball& b, const AxisBox<dim>& a, bool proper);
friend bool Contains<dim>(const Ball& b, const AxisBox<dim>& a, bool proper);
friend bool Contains<dim>(const AxisBox<dim>& a, const Ball& b, bool proper);
friend bool Intersect<dim>(const Ball& b1, const Ball& b2, bool proper);
friend bool Contains<dim>(const Ball& outer, const Ball& inner, bool proper);
friend bool Intersect<dim>(const Segment<dim>& s, const Ball& b, bool proper);
friend bool Contains<dim>(const Segment<dim>& s, const Ball& b, bool proper);
friend bool Intersect<dim>(const RotBox<dim>& r, const Ball& b, bool proper);
friend bool Contains<dim>(const RotBox<dim>& r, const Ball& b, bool proper);
friend bool Contains<dim>(const Ball& b, const RotBox<dim>& r, bool proper);
friend bool Intersect<dim>(const Polygon<dim>& p, const Ball& b, bool proper);
friend bool Contains<dim>(const Polygon<dim>& p, const Ball& b, bool proper);
friend bool Contains<dim>(const Ball& b, const Polygon<dim>& p, bool proper);
private:
Point<dim> m_center;
CoordType m_radius;
};
template<int dim>
inline bool Ball<dim>::isEqualTo(const Ball<dim>& b, CoordType epsilon) const
{
return Equal(m_center, b.m_center, epsilon)
&& Equal(m_radius, b.m_radius, epsilon);
}
} // namespace WFMath
#endif // WFMATH_BALL_H
|