This file is indexed.

/usr/include/visp/vpWireFrameSimulator.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/****************************************************************************
 *
 * $Id: vpWireFrameSimulator.h 4649 2014-02-07 14:57:11Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Wire frame simulator
 *
 * Authors:
 * Nicolas Melchior
 *
 *****************************************************************************/


#ifndef vpWireFrameSimulator_HH
#define vpWireFrameSimulator_HH

/*!
  \file vpWireFrameSimulator.h
  \brief Implementation of a wire frame simulator.
*/
#include <visp/vpConfig.h>
#include <stdio.h>
#include <iostream>
#include <cmath>    // std::fabs
#include <limits>   // numeric_limits
#include <list>
#include <string>

extern "C" {
#include <visp/vpMy.h>
#include <visp/vpArit.h>
#include <visp/vpBound.h>
#include <visp/vpView.h>
#include <visp/vpToken.h>
#include <visp/vpTmstack.h>
#include <visp/vpVwstack.h>
#include <visp/vpRfstack.h>
#include <visp/vpArit.h>

int open_display();
int close_display();
int open_clipping();
int close_clipping();
int open_keyword (Keyword *kwp);
int open_lex (void);
int open_source (FILE *fd, const char *str);
int malloc_Bound_scene (Bound_scene *bsp, const char *name,Index bn);
int free_Bound_scene (Bound_scene *bsp);
int parser (Bound_scene *bsp);
int close_source (void);
int close_lex (void);
int close_keyword (void);
void display_scene(Matrix mat, Bound_scene sc);
int View_to_Matrix (View_parameters *vp, Matrix m);
Bound *clipping_Bound (Bound *bp, Matrix m);
int set_Bound_face_display (Bound *bp, Byte b);
int point_3D_2D (Point3f *p3, Index size, unsigned int xsize, unsigned int ysize, Point2i *p2);
int wireframe_Face (Face *fp, Point2i *pp);
}

#include <visp/vpConfig.h>
#include <visp/vpImage.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpDisplay.h>
#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
# include <visp/vpList.h>
#endif
#include <visp/vpImagePoint.h>
#include <visp/vpImageSimulator.h>

void set_scene (const char*, Bound_scene *, float);
void vp2jlc_matrix (const vpHomogeneousMatrix, Matrix&);


/*!
  \class vpWireFrameSimulator

  \ingroup RobotSimuWithViz
  
  \brief Implementation of a wire frame simulator. Compared to the vpSimulator class, it does not
  require third party libraries to be used.
  
  The simulator uses several frames to display the scene in the image. There are:
  
  - The world frame : This is a fixed frame used to compute the position of the other frames against each other. By default this frame is positionned at the same location as the initial object frame position.
  
  - The object frame : It is the frame linked to the object.
  
  - The camera frame : It is the frame linked to the main camera.
  
  - The external camera frame : It is the frame which corresponds to one external point of view.
  
  The most used homogeneous matrices which describes the displacement between two frames are :
  
  - fMo which is the displacement between the world frame and the object frame.
  
  - cMo which is the displacement between the main camera frame and the object frame.
  
  - cextMf which is the displacement between one external camera frame and the world frame.
  
  The following picture summarize all the previous information.
  
  \image html vpWireFrameSimulator.jpeg
  \image latex vpWireFrameSimulator.ps
  
  The simulator uses .bnd or .wrl files as 3D scene descriptors. Several scenes can be found in the data folder which is in the directory where you build ViSP.
  
  You can move the main external view while clicking in the image. The left click enables to turn, the middle button enables to zoom and the left to translate along x and y.
  
  The simulator is able to take into account to camera parameters. You can set the internal and external cameras parameters thanks to a vpCameraParameters.
  
  The following example shows how it is easy to use.
  
  \code
  
  #include <visp/vpImage.h>
  #include <visp/vpWireFrameSimulator.h>
  
  int main()
  {
    vpWireFrameSimulator sim;
    
    vpImage<vpRGBa> Iint(480,640,255);
    vpImage<vpRGBa> Iext(480,640,255);
    
    //Set the type of scene to use
    sim.initScene(vpWireFrameSimulator::PLATE, vpWireFrameSimulator::D_STANDARD);
    
    //Set the initial pose of the camera
    sim.setCameraPositionRelObj(vpHomogeneousMatrix(0,0,0.5,vpMath::rad(0),vpMath::rad(10),0));
    //Set the desired pose of the camera (for the internal view)
    sim.setDesiredCameraPosition(vpHomogeneousMatrix(0.0,0,0.5,0,0,0));
    //Set the pose of the reference frame (for the external view)
    sim.setExternalCameraPosition(vpHomogeneousMatrix(0.1,0,0.2,0,0,0));
    
    //Set the camera parameters
    vpCameraParameters camera(1000,1000,320,240);
    sim.setInternalCameraParameters(camera);
    sim.setExternalCameraParameters(camera);
    
    //Get the internal view
    sim.getInternalImage(Iint);
    
    //Get the external view
    sim.getExternalImage(Iext);
    
    return 0;
  }
  \endcode
*/

class VISP_EXPORT vpWireFrameSimulator
{
public:

  /*!
      Type of scene used to display the object at the current position.
    */
  typedef enum
  {
    THREE_PTS, //!< A 40cm by 40cm plate with 3 points at coordinates (0,0,0), (0.1,0,0), (0,0.1,0). Each point is represented by a circle with 2cm radius.
    CUBE, //!< A 12.5cm size cube.
    PLATE, //!< A 40cm by 40cm plate with 4 points at coordinates (-0.1,-0.1,0), (0.1,-0.1,0), (0.1,0.1,0), (0.1,0.1,0). Each point is represented by a circle with 2cm radius.
    SMALL_PLATE, //!< 4 points at coordinates (-0.03,-0.03,0), (0.03,-0.03,0), (0.03,0.03,0), (0.03,0.03,0). Each point is represented by a circle with 1cm radius.
    RECTANGLE, //!< A 40cm by 40cm plate with 4 points at coordinates (-0.07,-0.05,0), (0.07,0.05,0), (0.07,-0.05,0), (-0.07,-0.05,0). Each point is represented by a circle with 2cm radius.
    SQUARE_10CM, //!< A 40cm by 40cm plate with 4 points at coordinates (-0.05,0.05,0), (0.05,0.05,0), (0.05,-0.05,0), (-0.05,-0.05,0). Each point is represented by a circle with 2cm radius.
    DIAMOND, //!< A 40cm by 40cm plate with 4 points at coordinates (0,-0.1,0), (0.1,0,0), (0,0.1,0), (-0.1,0,0). Each point is represented by a circle with 2cm radius.
    TRAPEZOID, //!< A 40cm by 40cm plate with 4 points at coordinates (-0.025,-0.05,0), (-0.075,0.05,0), (0.075,0.05,0), (0.025,-0.05,0). Each point is represented by a circle with 2cm radius.
    THREE_LINES, //!< Three parallel lines with equation y=-5, y=0, y=5.
    ROAD, //!< Three parallel lines representing a road.
    TIRE, //!< A tire represented by 2 circles with radius 10cm and 15cm.
    PIPE, //!< A pipe represented by a cylinder of 25 cm length and 15cm radius.
    CIRCLE, //!< A 10cm radius circle.
    SPHERE, //!< A 15cm radius sphere.
    CYLINDER, //!< A cylinder of 80cm length and 10cm radius.
    PLAN, //!< A plane represented by a 56cm by 56cm plate with a grid of 49 squares inside.
    POINT_CLOUD, //!< A plate with 8 points at coordinates (0.05,0,0), (0.15,0.05,0), (0.2,0.2,0), (-0.05,0.2,0), (-0.15,-0.1,0), (-0.1,-0.1,0), (-0.05,0.05,0) and (0.5,0,0). ach point is represented by a circle with 2cm radius.
  } vpSceneObject;

  /*!
      Type of scene used to display the object at the desired pose (in the internal view).
      
      - D_STANDARD will use the vpSceneObject used to be the object at the current position.
      - D_OUTIL will display a tool which is attached to the camera.
    */
  typedef enum
  {
    D_STANDARD, //!<  The object displayed at the desired position is the same than the scene object defined in vpSceneObject.
    D_CIRCLE, //!<  The object displayed at the desired position is a circle.
    D_TOOL //!< A cylindrical tool is attached to the camera.
  } vpSceneDesiredObject;

  typedef enum
  {
    CT_LINE,
    CT_POINT
  } vpCameraTrajectoryDisplayType;

protected:
  Bound_scene scene;
  Bound_scene desiredScene;
  Bound_scene camera;
  std::list<vpImageSimulator> objectImage;

  vpHomogeneousMatrix fMo;
  vpHomogeneousMatrix fMc;
  vpHomogeneousMatrix camMf;
  vpHomogeneousMatrix refMo;
  vpHomogeneousMatrix cMo;
  vpHomogeneousMatrix cdMo;

  vpSceneObject object;
  vpSceneDesiredObject desiredObject;

  vpColor camColor;
  vpColor camTrajColor;
  vpColor curColor;
  vpColor desColor;

  bool sceneInitialized;

  bool displayCameraTrajectory;
  std::list<vpImagePoint> cameraTrajectory;
  std::list<vpHomogeneousMatrix> poseList;
  std::list<vpHomogeneousMatrix> fMoList;
  unsigned int nbrPtLimit;

  vpImagePoint old_iPr;
  vpImagePoint old_iPz;
  vpImagePoint old_iPt;
  bool blockedr;
  bool blockedz;
  bool blockedt;
  bool blocked;

  vpHomogeneousMatrix camMf2;
  vpHomogeneousMatrix  f2Mf;

  double px_int;
  double py_int;
  double px_ext;
  double py_ext;

  bool displayObject;
  bool displayDesiredObject;
  bool displayCamera;
  bool displayImageSimulator;

  float cameraFactor;

  vpCameraTrajectoryDisplayType camTrajType;

  bool extCamChanged;

  vpHomogeneousMatrix rotz;

  unsigned int thickness_;

private:
  std::string scene_dir;
  
public:
  vpWireFrameSimulator();
  virtual ~vpWireFrameSimulator();

  /*!
      Delete the history of the main camera position which are displayed in the external views.
    */
  inline void deleteCameraPositionHistory() {
    cameraTrajectory.clear();
    poseList.clear();
    fMoList.clear();}

  void displayTrajectory(const vpImage<unsigned char> &I, const std::list<vpHomogeneousMatrix> &list_cMo, const std::list<vpHomogeneousMatrix> &list_fMo, const vpHomogeneousMatrix &camMf);
  void displayTrajectory(const vpImage<vpRGBa> &I, const std::list<vpHomogeneousMatrix> &list_cMo, const std::list<vpHomogeneousMatrix> &list_fMo, const vpHomogeneousMatrix &camMf);

  /*!
      Get the parameters of the virtual external camera.

      \param I : The image used to display the view of the camera.

      \return It returns the camera parameters.
    */
  vpCameraParameters getExternalCameraParameters(const vpImage<unsigned char> &I) const {
    //if(px_ext != 1 && py_ext != 1)
    // we assume px_ext and py_ext > 0
    if( (std::fabs(px_ext-1.) > vpMath::maximum(px_ext,1.)*std::numeric_limits<double>::epsilon())
        && (std::fabs(py_ext-1) > vpMath::maximum(py_ext,1.)*std::numeric_limits<double>::epsilon()))
      return vpCameraParameters(px_ext,py_ext,I.getWidth()/2,I.getHeight()/2);
    else
    {
      unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
      return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
    }
  }
  /*!
     Get the parameters of the virtual external camera.

     \param I : The image used to display the view of the camera.

     \return It returns the camera parameters.
   */
  vpCameraParameters getExternalCameraParameters(const vpImage<vpRGBa> &I) const {
    //if(px_ext != 1 && py_ext != 1)
    // we assume px_ext and py_ext > 0
    if( (std::fabs(px_ext-1.) > vpMath::maximum(px_ext,1.)*std::numeric_limits<double>::epsilon())
        && (std::fabs(py_ext-1) > vpMath::maximum(py_ext,1.)*std::numeric_limits<double>::epsilon()))
      return vpCameraParameters(px_ext,py_ext,I.getWidth()/2,I.getHeight()/2);
    else
    {
      unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
      return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
    }
  }
  /*!
     Get the main external camera's position relative to the the world reference frame.

     \return the main external camera position relative to the the world reference frame.
   */
  inline vpHomogeneousMatrix getExternalCameraPosition() const { return rotz * camMf;}

  void getExternalImage(vpImage<unsigned char> &I);
  void getExternalImage(vpImage<unsigned char> &I, const vpHomogeneousMatrix &camMf);
  void getExternalImage(vpImage<vpRGBa> &I);
  void getExternalImage(vpImage<vpRGBa> &I, const vpHomogeneousMatrix &camMf);

  /*!
      Get the parameters of the virtual internal camera.

      \param I : The image used to display the view of the camera.

      \return It returns the camera parameters.
    */
  vpCameraParameters getInternalCameraParameters(const vpImage<unsigned char> &I) const {
    //if(px_int != 1 && py_int != 1)
    // we assume px_int and py_int > 0
    if( (std::fabs(px_int-1.) > vpMath::maximum(px_int,1.)*std::numeric_limits<double>::epsilon())
        && (std::fabs(py_int-1) > vpMath::maximum(py_int,1.)*std::numeric_limits<double>::epsilon()))
      return vpCameraParameters(px_int,py_int,I.getWidth()/2,I.getHeight()/2);
    else
    {
      unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
      return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
    }
  }
  /*!
      Get the parameters of the virtual internal camera.

      \param I : The image used to display the view of the camera.

      \return It returns the camera parameters.
    */
  vpCameraParameters getInternalCameraParameters(const vpImage<vpRGBa> &I) const {
    //if(px_int != 1 && py_int != 1)
    // we assume px_int and py_int > 0
    if( (std::fabs(px_int-1.) > vpMath::maximum(px_int,1.)*std::numeric_limits<double>::epsilon())
        && (std::fabs(py_int-1) > vpMath::maximum(py_int,1.)*std::numeric_limits<double>::epsilon()))
      return vpCameraParameters(px_int,py_int,I.getWidth()/2,I.getHeight()/2);
    else
    {
      unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
      return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
    }
  }

  void getInternalImage(vpImage<unsigned char> &I);
  void getInternalImage(vpImage<vpRGBa> &I);

  /*!
      Get the pose between the object and the camera.

      \return The pose between between the object and the camera.
    */
  vpHomogeneousMatrix get_cMo() const {return rotz*cMo;}

  /*!
      Get the homogeneous matrices cMo stored to display the camera trajectory.

      \param cMo_history : The list of the homogeneous matrices cMo.
    */
  void get_cMo_History(std::list<vpHomogeneousMatrix>& cMo_history) {
    cMo_history.clear();
    for(std::list<vpHomogeneousMatrix>::const_iterator it=poseList.begin(); it!=poseList.end(); ++it){
      cMo_history.push_back(rotz*(*it));
    }
  }

  /*!
      Get the pose between the object and the fixed world frame.

      \return The pose between the object and the fixed world frame.
    */
  vpHomogeneousMatrix get_fMo() const {return fMo;}

  /*!
      Get the homogeneous matrices fMo stored to display the camera trajectory.

      \param fMo_history : The list of the homogeneous matrices fMo.
    */
  void get_fMo_History(std::list<vpHomogeneousMatrix>& fMo_history) {fMo_history = fMoList;}

  void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject);
  void initScene(const char* obj, const char* desiredObject);
  void initScene(const vpSceneObject &obj);
  void initScene(const char* obj);

  void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject, const std::list<vpImageSimulator> &imObj);
  void initScene(const char* obj, const char* desiredObject, const std::list<vpImageSimulator> &imObj);
  void initScene(const vpSceneObject &obj, const std::list<vpImageSimulator> &imObj);
  void initScene(const char* obj, const std::list<vpImageSimulator> &imObj);

  /*!
      Set the color used to display the camera in the external view.

      \param col : The desired color.
    */
  void setCameraColor(const vpColor &col) {camColor = col;}
  /*!
      Set the position of the camera relative to the object.
      
      \param cMo_ : The pose of the camera.
    */
  void setCameraPositionRelObj(const vpHomogeneousMatrix &cMo_) {this->cMo = rotz * cMo_; fMc = fMo*this->cMo.inverse();}

  /*!
      Set the position of the the world reference frame relative to the camera.
      
      \param fMc_ : The pose of the camera.
    */
  void setCameraPositionRelWorld(const vpHomogeneousMatrix &fMc_) {this->fMc = fMc_*rotz; cMo = this->fMc.inverse()*fMo;}

  /*!
      Set the parameter which enables to choose the size of the main camera in the external camera views. By default this parameter is set to 1.

      \param factor : The ration for the camera size.
    */
  inline void setCameraSizeFactor (const float factor) {cameraFactor = factor;}

  /*!
      Set the color used to display the camera trajectory in the external view.

      \param col : The desired color.
    */
  void setCameraTrajectoryColor(const vpColor &col) {camTrajColor = col;}

  /*!
      Set the way to display the history of the main camera trajectory in the main external view. The choice is given between displaying lines and points.

      \param camTraj_type : The chosen way to display the camera trajectory.
    */
  inline void setCameraTrajectoryDisplayType (const vpCameraTrajectoryDisplayType &camTraj_type) {this->camTrajType = camTraj_type;}

  /*!
      Set the color used to display the object at the current position.

      \param col : The desired color.
    */
  void setCurrentViewColor(const vpColor &col) {curColor = col;}
  /*!
      Set the desired position of the camera relative to the object.
      
      \param cdMo_ : The desired pose of the camera.
    */
  void setDesiredCameraPosition(const vpHomogeneousMatrix &cdMo_) {this->cdMo = rotz * cdMo_;}
  /*!
      Set the color used to display the object at the desired position.

      \param col : The desired color.
    */
  void setDesiredViewColor(const vpColor &col) {desColor = col;}
  /*!
      Enable or disable the displaying of the camera trajectory in the main external camera view.

      By default the trajectory is displayed.

      \param do_display : Set to true to display the camera trajectory.
    */
  void setDisplayCameraTrajectory (const bool &do_display) {this->displayCameraTrajectory = do_display;}

  /*!
      Set the internal camera parameters.

      \param cam : The desired camera parameters.
    */
  inline void setExternalCameraParameters(const vpCameraParameters &cam) {
    px_ext = cam.get_px();
    py_ext = cam.get_py();
  }
  /*!
      Set the external camera point of view.
      
      \param cam_Mf : The pose of the external camera relative to the world reference frame.
    */
  void setExternalCameraPosition(const vpHomogeneousMatrix &cam_Mf)
  {
    this->camMf = rotz * cam_Mf;
    vpTranslationVector T;
    this->camMf.extract (T);
    this->camMf2.buildFrom(0,0,T[2],0,0,0);
    f2Mf = camMf2.inverse()*this->camMf;
    extCamChanged = true;
  }

  /*!
    Specify the thickness of the graphics drawings.
    */
  void setGraphicsThickness(unsigned int thickness)
  {
    this->thickness_ = thickness;
  }

  /*!
      Set the internal camera parameters.

      \param cam : The desired camera parameters.
    */
  inline void setInternalCameraParameters(const vpCameraParameters &cam) {
    px_int = cam.get_px();
    py_int = cam.get_py();
  }

  /*!
      Set the maximum number of main camera's positions which are stored. Those position can be displayed in the external camera field of view. By default this parameter is set to 1000.

      \param nbPt : The desired number of position which are saved.
    */
  inline void setNbPtTrajectory(const unsigned int nbPt) {nbrPtLimit = nbPt;}

  /*!
      Set the pose between the object and the fixed world frame.
      
      \param fMo_ : The pose between the object and the fixed world frame.
    */
  void set_fMo(const vpHomogeneousMatrix &fMo_) {this->fMo = fMo_;/*this->cMo = fMc.inverse()*fMo;*/}

protected:
  void display_scene(Matrix mat, Bound_scene &sc, const vpImage<vpRGBa> &I, const vpColor &color);
  void display_scene(Matrix mat, Bound_scene &sc, const vpImage<unsigned char> &I, const vpColor &color);
  vpHomogeneousMatrix navigation(const vpImage<vpRGBa> &I, bool &changed);
  vpHomogeneousMatrix navigation(const vpImage<unsigned char> &I, bool &changed);
  vpImagePoint projectCameraTrajectory (const vpImage<vpRGBa> &I, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &fMo);
  vpImagePoint projectCameraTrajectory (const vpImage<unsigned char> &I, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &fMo);
  vpImagePoint projectCameraTrajectory (const vpImage<vpRGBa> &I, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &fMo, const vpHomogeneousMatrix &cMf);
  vpImagePoint projectCameraTrajectory (const vpImage<unsigned char> &I, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &fMo, const vpHomogeneousMatrix &cMf);

public:

#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
  /*!
    @name Deprecated functions
  */

  vp_deprecated void displayTrajectory(const vpImage<unsigned char> &I, vpList<vpHomogeneousMatrix> &list_cMo, vpList<vpHomogeneousMatrix> &list_fMo, vpHomogeneousMatrix camMf);
  vp_deprecated void displayTrajectory(const vpImage<vpRGBa> &I, vpList<vpHomogeneousMatrix> &list_cMo, vpList<vpHomogeneousMatrix> &list_fMo, vpHomogeneousMatrix camMf);

  /*!
      \deprecated This method is deprecated. You should use
      get_cMo_History(std::list<vpHomogeneousMatrix> &) instead. \n \n
      Get the homogeneous matrices cMo stored to display the camera trajectory.

       \return Returns the list of the homogeneous matrices cMo.
    */
  vp_deprecated vpList<vpHomogeneousMatrix> get_cMo_History () {
    vpList<vpHomogeneousMatrix> list_cMo;
    vpHomogeneousMatrix tmp_;
    for(std::list<vpHomogeneousMatrix>::const_iterator it=poseList.begin(); it!=poseList.end(); ++it){
      tmp_ = (rotz*(*it));
      list_cMo.addRight(tmp_);
    }
    return list_cMo;}
  /*!
      \deprecated This method is deprecated. You should use
      get_fMo_History(std::list<vpHomogeneousMatrix> &) instead. \n \n
      Get the homogeneous matrices fMo stored to display the camera trajectory.

      \return Returns the list of the homogeneous matrices fMo.
    */
  vp_deprecated vpList<vpHomogeneousMatrix> get_fMo_History () {
    vpList<vpHomogeneousMatrix> fMoHistory;
    for(std::list<vpHomogeneousMatrix>::const_iterator iter = fMoList.begin(); iter != fMoList.end(); ++iter){
      fMoHistory.addRight(*iter);
    }
    return fMoHistory;}


  vp_deprecated void initScene(vpSceneObject obj, vpSceneDesiredObject desiredObject, vpList<vpImageSimulator> &imObj);
  vp_deprecated void initScene(const char* obj, const char* desiredObject, vpList<vpImageSimulator> &imObj);
  vp_deprecated void initScene(vpSceneObject obj, vpList<vpImageSimulator> &imObj);
  vp_deprecated void initScene(const char* obj, vpList<vpImageSimulator> &imObj);

#endif
};

#endif