This file is indexed.

/usr/include/vigra/random_forest/rf_algorithm.hxx is in libvigraimpex-dev 1.9.0+dfsg-10+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/************************************************************************/
/*                                                                      */
/*        Copyright 2008-2009 by Rahul Nair                             */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/
#define VIGRA_RF_ALGORITHM_HXX

#include <vector>
#include "splices.hxx"
#include <queue>
#include <fstream>
namespace vigra
{
 
namespace rf
{
/** This namespace contains all algorithms developed for feature 
 * selection
 *
 */
namespace algorithms
{

namespace detail
{
    /** create a MultiArray containing only columns supplied between iterators
        b and e
    */
    template<class OrigMultiArray,
             class Iter,
             class DestMultiArray>
    void choose(OrigMultiArray     const & in,
                Iter               const & b,
                Iter               const & e,
                DestMultiArray        & out)
    {
        int columnCount = std::distance(b, e);
        int rowCount     = in.shape(0);
        out.reshape(MultiArrayShape<2>::type(rowCount, columnCount));
        int ii = 0;
        for(Iter iter = b; iter != e; ++iter, ++ii)
        {
            columnVector(out, ii) = columnVector(in, *iter);
        }
    }
}



/** Standard random forest Errorrate callback functor
 *
 * returns the random forest error estimate when invoked. 
 */
class RFErrorCallback
{
    RandomForestOptions options;
    
    public:
    /** Default constructor
     *
     * optionally supply options to the random forest classifier
     * \sa RandomForestOptions
     */
    RFErrorCallback(RandomForestOptions opt = RandomForestOptions())
    : options(opt)
    {}

    /** returns the RF OOB error estimate given features and 
     * labels
     */
    template<class Feature_t, class Response_t>
    double operator() (Feature_t const & features,
                       Response_t const & response)
    {
        RandomForest<>             rf(options);
        visitors::OOB_Error        oob;
        rf.learn(features, 
                 response, 
                 visitors::create_visitor(oob ));
        return oob.oob_breiman;
    }
};


/** Structure to hold Variable Selection results
 */
class VariableSelectionResult
{
    bool initialized;

  public:
    VariableSelectionResult()
    : initialized(false)
    {}

    typedef std::vector<int> FeatureList_t;
    typedef std::vector<double> ErrorList_t;
    typedef FeatureList_t::iterator Pivot_t;

    Pivot_t pivot;

    /** list of features. 
     */
    FeatureList_t selected;
    
    /** vector of size (number of features)
     *
     * the i-th entry encodes the error rate obtained
     * while using features [0 - i](including i) 
     *
     * if the i-th entry is -1 then no error rate was obtained
     * this may happen if more than one feature is added to the
     * selected list in one step of the algorithm.
     *
     * during initialisation error[m+n-1] is always filled
     */
    ErrorList_t errors;
    

    /** errorrate using no features
     */
    double no_features;

    template<class FeatureT, 
             class ResponseT, 
             class Iter,
             class ErrorRateCallBack>
    bool init(FeatureT const & all_features,
              ResponseT const & response,
              Iter b,
              Iter e,
              ErrorRateCallBack errorcallback)
    {
        bool ret_ = init(all_features, response, errorcallback); 
        if(!ret_)
            return false;
        vigra_precondition(std::distance(b, e) == (std::ptrdiff_t)selected.size(),
                           "Number of features in ranking != number of features matrix");
        std::copy(b, e, selected.begin());
        return true;
    }
    
    template<class FeatureT, 
             class ResponseT, 
             class Iter>
    bool init(FeatureT const & all_features,
              ResponseT const & response,
              Iter b,
              Iter e)
    {
        RFErrorCallback ecallback;
        return init(all_features, response, b, e, ecallback);
    }


    template<class FeatureT, 
             class ResponseT>
    bool init(FeatureT const & all_features,
              ResponseT const & response)
    {
        return init(all_features, response, RFErrorCallback());
    }
    /**initialization routine. Will be called only once in the lifetime
     * of a VariableSelectionResult. Subsequent calls will not reinitialize
     * member variables.
     *
     * This is intended, to allow continuing variable selection at a point 
     * stopped in an earlier iteration. 
     *
     * returns true if initialization was successful and false if 
     * the object was already initialized before.
     */
    template<class FeatureT, 
             class ResponseT,
             class ErrorRateCallBack>
    bool init(FeatureT const & all_features,
              ResponseT const & response,
              ErrorRateCallBack errorcallback)
    {
        if(initialized)
        {
            return false;
        }
        initialized = true;
        // calculate error with all features
        selected.resize(all_features.shape(1), 0);
        for(unsigned int ii = 0; ii < selected.size(); ++ii)
            selected[ii] = ii;
        errors.resize(all_features.shape(1), -1);
        errors.back() = errorcallback(all_features, response);

        // calculate error rate if no features are chosen 
        // corresponds to max(prior probability) of the classes
        std::map<typename ResponseT::value_type, int>     res_map;
        std::vector<int>                                 cts;
        int                                             counter = 0;
        for(int ii = 0; ii < response.shape(0); ++ii)
        {
            if(res_map.find(response(ii, 0)) == res_map.end())
            {
                res_map[response(ii, 0)] = counter;
                ++counter;
                cts.push_back(0);
            }
            cts[res_map[response(ii,0)]] +=1;
        }
        no_features = double(*(std::max_element(cts.begin(),
                                                 cts.end())))
                    / double(response.shape(0));

        /*init not_selected vector;
        not_selected.resize(all_features.shape(1), 0);
        for(int ii = 0; ii < not_selected.size(); ++ii)
        {
            not_selected[ii] = ii;
        }
        initialized = true;
        */
        pivot = selected.begin();
        return true;
    }
};


    
/** Perform forward selection
 *
 * \param features    IN:     n x p matrix containing n instances with p attributes/features
 *                             used in the variable selection algorithm
 * \param response  IN:     n x 1 matrix containing the corresponding response
 * \param result    IN/OUT: VariableSelectionResult struct which will contain the results
 *                             of the algorithm. 
 *                             Features between result.selected.begin() and result.pivot will
 *                             be left untouched.
 *                             \sa VariableSelectionResult
 * \param errorcallback
 *                     IN, OPTIONAL: 
 *                             Functor that returns the error rate given a set of 
 *                             features and labels. Default is the RandomForest OOB Error.
 *
 * Forward selection subsequently chooses the next feature that decreases the Error rate most.
 *
 * usage:
 * \code
 *         MultiArray<2, double>     features = createSomeFeatures();
 *         MultiArray<2, int>        labels   = createCorrespondingLabels();
 *         VariableSelectionResult  result;
 *         forward_selection(features, labels, result);
 * \endcode
 * To use forward selection but ensure that a specific feature e.g. feature 5 is always 
 * included one would do the following
 *
 * \code
 *         VariableSelectionResult result;
 *         result.init(features, labels);
 *         std::swap(result.selected[0], result.selected[5]);
 *         result.setPivot(1);
 *         forward_selection(features, labels, result);
 * \endcode
 *
 * \sa VariableSelectionResult
 *
 */                    
template<class FeatureT, class ResponseT, class ErrorRateCallBack>
void forward_selection(FeatureT          const & features,
                       ResponseT          const & response,
                       VariableSelectionResult & result,
                       ErrorRateCallBack          errorcallback)
{
    VariableSelectionResult::FeatureList_t & selected         = result.selected;
    VariableSelectionResult::ErrorList_t &     errors            = result.errors;
    VariableSelectionResult::Pivot_t       & pivot            = result.pivot;    
    int featureCount = features.shape(1);
    // initialize result struct if in use for the first time
    if(!result.init(features, response, errorcallback))
    {
        //result is being reused just ensure that the number of features is
        //the same.
        vigra_precondition((int)selected.size() == featureCount,
                           "forward_selection(): Number of features in Feature "
                           "matrix and number of features in previously used "
                           "result struct mismatch!");
    }
    

    int not_selected_size = std::distance(pivot, selected.end());
    while(not_selected_size > 1)
    {
        std::vector<double> current_errors;
        VariableSelectionResult::Pivot_t next = pivot;
        for(int ii = 0; ii < not_selected_size; ++ii, ++next)
        {
            std::swap(*pivot, *next);
            MultiArray<2, double> cur_feats;
            detail::choose( features, 
                            selected.begin(), 
                            pivot+1, 
                            cur_feats);
            double error = errorcallback(cur_feats, response);
            current_errors.push_back(error);
            std::swap(*pivot, *next);
        }
        int pos = std::distance(current_errors.begin(),
                                std::min_element(current_errors.begin(),
                                                   current_errors.end()));
        next = pivot;
        std::advance(next, pos);
        std::swap(*pivot, *next);
        errors[std::distance(selected.begin(), pivot)] = current_errors[pos];
#ifdef RN_VERBOSE
            std::copy(current_errors.begin(), current_errors.end(), std::ostream_iterator<double>(std::cerr, ", "));
            std::cerr << "Choosing " << *pivot << " at error of " <<  current_errors[pos] << std::endl;
#endif
        ++pivot;
        not_selected_size = std::distance(pivot, selected.end());
    }
}
template<class FeatureT, class ResponseT>
void forward_selection(FeatureT          const & features,
                       ResponseT          const & response,
                       VariableSelectionResult & result)
{
    forward_selection(features, response, result, RFErrorCallback());
}


/** Perform backward elimination
 *
 * \param features    IN:     n x p matrix containing n instances with p attributes/features
 *                             used in the variable selection algorithm
 * \param response  IN:     n x 1 matrix containing the corresponding response
 * \param result    IN/OUT: VariableSelectionResult struct which will contain the results
 *                             of the algorithm. 
 *                             Features between result.pivot and result.selected.end() will
 *                             be left untouched.
 *                             \sa VariableSelectionResult
 * \param errorcallback
 *                     IN, OPTIONAL: 
 *                             Functor that returns the error rate given a set of 
 *                             features and labels. Default is the RandomForest OOB Error.
 *
 * Backward elimination subsequently eliminates features that have the least influence
 * on the error rate
 *
 * usage:
 * \code
 *         MultiArray<2, double>     features = createSomeFeatures();
 *         MultiArray<2, int>        labels   = createCorrespondingLabels();
 *         VariableSelectionResult  result;
 *         backward_elimination(features, labels, result);
 * \endcode
 * To use backward elimination but ensure that a specific feature e.g. feature 5 is always 
 * excluded one would do the following:
 *
 * \code
 *         VariableSelectionResult result;
 *         result.init(features, labels);
 *         std::swap(result.selected[result.selected.size()-1], result.selected[5]);
 *         result.setPivot(result.selected.size()-1);
 *         backward_elimination(features, labels, result);
 * \endcode
 *
 * \sa VariableSelectionResult
 *
 */                    
template<class FeatureT, class ResponseT, class ErrorRateCallBack>
void backward_elimination(FeatureT              const & features,
                             ResponseT         const & response,
                          VariableSelectionResult & result,
                          ErrorRateCallBack         errorcallback)
{
    int featureCount = features.shape(1);
    VariableSelectionResult::FeatureList_t & selected         = result.selected;
    VariableSelectionResult::ErrorList_t &     errors            = result.errors;
    VariableSelectionResult::Pivot_t       & pivot            = result.pivot;    
    
    // initialize result struct if in use for the first time
    if(!result.init(features, response, errorcallback))
    {
        //result is being reused just ensure that the number of features is
        //the same.
        vigra_precondition((int)selected.size() == featureCount,
                           "backward_elimination(): Number of features in Feature "
                           "matrix and number of features in previously used "
                           "result struct mismatch!");
    }
    pivot = selected.end() - 1;    

    int selected_size = std::distance(selected.begin(), pivot);
    while(selected_size > 1)
    {
        VariableSelectionResult::Pivot_t next = selected.begin();
        std::vector<double> current_errors;
        for(int ii = 0; ii < selected_size; ++ii, ++next)
        {
            std::swap(*pivot, *next);
            MultiArray<2, double> cur_feats;
            detail::choose( features, 
                            selected.begin(), 
                            pivot+1, 
                            cur_feats);
            double error = errorcallback(cur_feats, response);
            current_errors.push_back(error);
            std::swap(*pivot, *next);
        }
        int pos = std::distance(current_errors.begin(),
                                std::min_element(current_errors.begin(),
                                                   current_errors.end()));
        next = selected.begin();
        std::advance(next, pos);
        std::swap(*pivot, *next);
//        std::cerr << std::distance(selected.begin(), pivot) << " " << pos << " " << current_errors.size() << " " << errors.size() << std::endl;
        errors[std::distance(selected.begin(), pivot)-1] = current_errors[pos];
        selected_size = std::distance(selected.begin(), pivot);
#ifdef RN_VERBOSE
            std::copy(current_errors.begin(), current_errors.end(), std::ostream_iterator<double>(std::cerr, ", "));
            std::cerr << "Eliminating " << *pivot << " at error of " << current_errors[pos] << std::endl;
#endif
        --pivot;
    }
}

template<class FeatureT, class ResponseT>
void backward_elimination(FeatureT              const & features,
                             ResponseT         const & response,
                          VariableSelectionResult & result)
{
    backward_elimination(features, response, result, RFErrorCallback());
}

/** Perform rank selection using a predefined ranking
 *
 * \param features    IN:     n x p matrix containing n instances with p attributes/features
 *                             used in the variable selection algorithm
 * \param response  IN:     n x 1 matrix containing the corresponding response
 * \param result    IN/OUT: VariableSelectionResult struct which will contain the results
 *                             of the algorithm. The struct should be initialized with the
 *                             predefined ranking.
 *                         
 *                             \sa VariableSelectionResult
 * \param errorcallback
 *                     IN, OPTIONAL: 
 *                             Functor that returns the error rate given a set of 
 *                             features and labels. Default is the RandomForest OOB Error.
 *
 * Often some variable importance, score measure is used to create the ordering in which
 * variables have to be selected. This method takes such a ranking and calculates the 
 * corresponding error rates. 
 *
 * usage:
 * \code
 *         MultiArray<2, double>     features = createSomeFeatures();
 *         MultiArray<2, int>        labels   = createCorrespondingLabels();
 *         std::vector<int>        ranking  = createRanking(features);
 *         VariableSelectionResult  result;
 *         result.init(features, labels, ranking.begin(), ranking.end());
 *         backward_elimination(features, labels, result);
 * \endcode
 *
 * \sa VariableSelectionResult
 *
 */                    
template<class FeatureT, class ResponseT, class ErrorRateCallBack>
void rank_selection      (FeatureT              const & features,
                             ResponseT         const & response,
                          VariableSelectionResult & result,
                          ErrorRateCallBack         errorcallback)
{
    VariableSelectionResult::FeatureList_t & selected         = result.selected;
    VariableSelectionResult::ErrorList_t &     errors            = result.errors;
    VariableSelectionResult::Pivot_t       & iter            = result.pivot;
    int featureCount = features.shape(1);
    // initialize result struct if in use for the first time
    if(!result.init(features, response, errorcallback))
    {
        //result is being reused just ensure that the number of features is
        //the same.
        vigra_precondition((int)selected.size() == featureCount,
                           "forward_selection(): Number of features in Feature "
                           "matrix and number of features in previously used "
                           "result struct mismatch!");
    }
    
    int ii = 0;
    for(; iter != selected.end(); ++iter)
    {
        ++ii;
        MultiArray<2, double> cur_feats;
        detail::choose( features, 
                        selected.begin(), 
                        iter+1, 
                        cur_feats);
        double error = errorcallback(cur_feats, response);
        errors[std::distance(selected.begin(), iter)] = error;
#ifdef RN_VERBOSE
            std::copy(selected.begin(), iter+1, std::ostream_iterator<int>(std::cerr, ", "));
            std::cerr << "Choosing " << *(iter+1) << " at error of " <<  error << std::endl;
#endif

    }
}

template<class FeatureT, class ResponseT>
void rank_selection      (FeatureT              const & features,
                             ResponseT         const & response,
                          VariableSelectionResult & result)
{
    rank_selection(features, response, result, RFErrorCallback());
}



enum ClusterLeafTypes{c_Leaf = 95, c_Node = 99};

/* View of a Node in the hierarchical clustering 
 * class 
 * For internal use only - 
 * \sa NodeBase
 */
class ClusterNode
: public NodeBase
{
    public:

    typedef NodeBase BT;

        /**constructors **/
    ClusterNode():NodeBase(){}
    ClusterNode(    int                      nCol,
                    BT::T_Container_type    &   topology,
                    BT::P_Container_type    &   split_param)
                :   BT(nCol + 5, 5,topology, split_param)
    {
        status() = 0; 
        BT::column_data()[0] = nCol;
        if(nCol == 1)
            BT::typeID() = c_Leaf;
        else
            BT::typeID() = c_Node;
    }

    ClusterNode(           BT::T_Container_type  const  &   topology,
                    BT::P_Container_type  const  &   split_param,
                    int                  n             )
                :   NodeBase(5 , 5,topology, split_param, n)
    {
        //TODO : is there a more elegant way to do this?
        BT::topology_size_ += BT::column_data()[0];
    }

    ClusterNode( BT & node_)
        :   BT(5, 5, node_) 
    {
        //TODO : is there a more elegant way to do this?
        BT::topology_size_ += BT::column_data()[0];
        BT::parameter_size_ += 0;
    }
    int index()
    {
        return static_cast<int>(BT::parameters_begin()[1]);
    }
    void set_index(int in)
    {
        BT::parameters_begin()[1] = in;
    }
    double& mean()
    {
        return BT::parameters_begin()[2];
    }
    double& stdev()
    {
        return BT::parameters_begin()[3];
    }
    double& status()
    {
        return BT::parameters_begin()[4];
    }
};

/** Stackentry class for HClustering class
 */
struct HC_Entry
{
    int parent;
    int level;
    int addr; 
    bool infm;
    HC_Entry(int p, int l, int a, bool in)
        : parent(p), level(l), addr(a), infm(in)
    {}
};


/** Hierarchical Clustering class. 
 * Performs single linkage clustering
 * \code
 *         Matrix<double> distance = get_distance_matrix();
 *      linkage.cluster(distance);
 *      // Draw clustering tree.
 *      Draw<double, int> draw(features, labels, "linkagetree.graph");
 *      linkage.breadth_first_traversal(draw);
 * \endcode
 * \sa ClusterImportanceVisitor
 *
 * once the clustering has taken place. Information queries can be made
 * using the breadth_first_traversal() method and iterate() method
 *
 */
class HClustering
{
public:
    typedef MultiArrayShape<2>::type Shp;
    ArrayVector<int>         topology_;
    ArrayVector<double>     parameters_;
    int                     begin_addr;

    // Calculates the distance between two 
    double dist_func(double a, double b)
    {
        return std::min(a, b); 
    }

    /** Visit each node with a Functor 
     * in creation order (should be depth first)
     */
    template<class Functor>
    void iterate(Functor & tester)
    {

        std::vector<int> stack; 
        stack.push_back(begin_addr); 
        while(!stack.empty())
        {
            ClusterNode node(topology_, parameters_, stack.back());
            stack.pop_back();
            if(!tester(node))
            {
                if(node.columns_size() != 1)
                {
                    stack.push_back(node.child(0));
                    stack.push_back(node.child(1));
                }
            }
        }
    }

    /** Perform breadth first traversal of hierarchical cluster tree
     */
    template<class Functor>
    void breadth_first_traversal(Functor & tester)
    {

        std::queue<HC_Entry> queue; 
        int level = 0;
        int parent = -1;
        int addr   = -1;
        bool infm  = false;
        queue.push(HC_Entry(parent,level,begin_addr, infm)); 
        while(!queue.empty())
        {
            level  = queue.front().level;
            parent = queue.front().parent;
            addr   = queue.front().addr;
            infm   = queue.front().infm;
            ClusterNode node(topology_, parameters_, queue.front().addr);
            ClusterNode parnt;
            if(parent != -1)
            {
                parnt = ClusterNode(topology_, parameters_, parent); 
            }
            queue.pop();
            bool istrue = tester(node, level, parnt, infm);
            if(node.columns_size() != 1)
            {
                queue.push(HC_Entry(addr, level +1,node.child(0),istrue));
                queue.push(HC_Entry(addr, level +1,node.child(1),istrue));
            }
        }
    }
    /**save to HDF5 - defunct - has to be updated to new HDF5 interface
     */
#ifdef HasHDF5
    void save(std::string file, std::string prefix)
    {

        vigra::writeHDF5(file.c_str(), (prefix + "topology").c_str(), 
                               MultiArrayView<2, int>(
                                    Shp(topology_.size(),1),
                                    topology_.data()));
        vigra::writeHDF5(file.c_str(), (prefix + "parameters").c_str(), 
                               MultiArrayView<2, double>(
                                    Shp(parameters_.size(), 1),
                                    parameters_.data()));
        vigra::writeHDF5(file.c_str(), (prefix + "begin_addr").c_str(), 
                               MultiArrayView<2, int>(Shp(1,1), &begin_addr));

    }
#endif

    /**Perform single linkage clustering
     * \param distance distance matrix used. \sa CorrelationVisitor
     */
    template<class T, class C>
    void cluster(MultiArrayView<2, T, C> distance)
    {
        MultiArray<2, T> dist(distance); 
        std::vector<std::pair<int, int> > addr; 
        typedef std::pair<int, int>  Entry;
        int index = 0;
        for(int ii = 0; ii < distance.shape(0); ++ii)
        {
            addr.push_back(std::make_pair(topology_.size(), ii));
            ClusterNode leaf(1, topology_, parameters_);
            leaf.set_index(index);
            ++index;
            leaf.columns_begin()[0] = ii;
        }

        while(addr.size() != 1)
        {
            //find the two nodes with the smallest distance
            int ii_min = 0;
            int jj_min = 1;
            double min_dist = dist((addr.begin()+ii_min)->second, 
                              (addr.begin()+jj_min)->second);
            for(unsigned int ii = 0; ii < addr.size(); ++ii)
            {
                for(unsigned int jj = ii+1; jj < addr.size(); ++jj)
                {
                    if(  dist((addr.begin()+ii_min)->second, 
                              (addr.begin()+jj_min)->second)
                       > dist((addr.begin()+ii)->second, 
                              (addr.begin()+jj)->second))
                    {
                        min_dist = dist((addr.begin()+ii)->second, 
                              (addr.begin()+jj)->second);
                        ii_min = ii; 
                        jj_min = jj;
                    }
                }
            }

            //merge two nodes
            int col_size = 0;
            // The problem is that creating a new node invalidates the iterators stored
            // in firstChild and secondChild.
            {
                ClusterNode firstChild(topology_, 
                                       parameters_, 
                                       (addr.begin() +ii_min)->first);
                ClusterNode secondChild(topology_, 
                                       parameters_, 
                                       (addr.begin() +jj_min)->first);
                col_size = firstChild.columns_size() + secondChild.columns_size();
            }
            int cur_addr = topology_.size();
            begin_addr = cur_addr;
//            std::cerr << col_size << std::endl;
            ClusterNode parent(col_size,
                               topology_,
                               parameters_); 
            ClusterNode firstChild(topology_, 
                                   parameters_, 
                                   (addr.begin() +ii_min)->first);
            ClusterNode secondChild(topology_, 
                                   parameters_, 
                                   (addr.begin() +jj_min)->first);
            parent.parameters_begin()[0] = min_dist;
            parent.set_index(index);
            ++index;
            std::merge(firstChild.columns_begin(), firstChild.columns_end(),
                       secondChild.columns_begin(),secondChild.columns_end(),
                       parent.columns_begin());
            //merge nodes in addr
            int to_desc;
            int ii_keep;
            if(*parent.columns_begin() ==  *firstChild.columns_begin())
            {
                parent.child(0) = (addr.begin()+ii_min)->first;
                parent.child(1) = (addr.begin()+jj_min)->first;
                (addr.begin()+ii_min)->first = cur_addr;
                ii_keep = ii_min;
                to_desc = (addr.begin()+jj_min)->second;
                addr.erase(addr.begin()+jj_min);
            }
            else
            {
                parent.child(1) = (addr.begin()+ii_min)->first;
                parent.child(0) = (addr.begin()+jj_min)->first;
                (addr.begin()+jj_min)->first = cur_addr;
                ii_keep = jj_min;
                to_desc = (addr.begin()+ii_min)->second;
                addr.erase(addr.begin()+ii_min);
            }
            //update distances;
            
            for(int jj = 0 ; jj < (int)addr.size(); ++jj)
            {
                if(jj == ii_keep)
                    continue;
                double bla = dist_func(
                                  dist(to_desc, (addr.begin()+jj)->second),
                                  dist((addr.begin()+ii_keep)->second,
                                        (addr.begin()+jj)->second));

                dist((addr.begin()+ii_keep)->second,
                     (addr.begin()+jj)->second) = bla;
                dist((addr.begin()+jj)->second,
                     (addr.begin()+ii_keep)->second) = bla;
            }
        }
    }

};


/** Normalize the status value in the HClustering tree (HClustering Visitor)
 */
class NormalizeStatus
{
public:
    double n;
    /** Constructor
     * \param m normalize status() by m
     */
    NormalizeStatus(double m)
        :n(m)
    {}
    template<class Node>
    bool operator()(Node& node)
    {
        node.status()/=n;
        return false;
    }
};


/** Perform Permutation importance on HClustering clusters
 * (See visit_after_tree() method of visitors::VariableImportance to 
 * see the basic idea. (Just that we apply the permutation not only to
 * variables but also to clusters))
 */
template<class Iter, class DT>
class PermuteCluster
{
public:
    typedef MultiArrayShape<2>::type Shp;
    Matrix<double> tmp_mem_;
    MultiArrayView<2, double> perm_imp;
    MultiArrayView<2, double> orig_imp;
    Matrix<double> feats_;
    Matrix<int>    labels_;
    const int      nPerm;
    DT const &           dt;
    int index;
    int oob_size;

    template<class Feat_T, class Label_T>
    PermuteCluster(Iter  a, 
                   Iter  b,
                   Feat_T const & feats,
                   Label_T const & labls, 
                   MultiArrayView<2, double> p_imp, 
                   MultiArrayView<2, double> o_imp, 
                   int np,
                   DT const  & dt_)
        :tmp_mem_(_spl(a, b).size(), feats.shape(1)),
         perm_imp(p_imp),
         orig_imp(o_imp),
         feats_(_spl(a,b).size(), feats.shape(1)),
         labels_(_spl(a,b).size(),1),
         nPerm(np),
         dt(dt_),
         index(0),
         oob_size(b-a)
    {
        copy_splice(_spl(a,b),
                    _spl(feats.shape(1)),
                    feats,
                    feats_);
        copy_splice(_spl(a,b),
                    _spl(labls.shape(1)),
                    labls,
                    labels_);
    }

    template<class Node>
    bool operator()(Node& node)
    {
        tmp_mem_ = feats_;
        RandomMT19937 random;
        int class_count = perm_imp.shape(1) - 1;
        //permute columns together
        for(int kk = 0; kk < nPerm; ++kk)
        {
            tmp_mem_ = feats_;
            for(int ii = 0; ii < rowCount(feats_); ++ii)
            {
                int index = random.uniformInt(rowCount(feats_) - ii) +ii;
                for(int jj = 0; jj < node.columns_size(); ++jj)
                {
                    if(node.columns_begin()[jj] != feats_.shape(1))
                        tmp_mem_(ii, node.columns_begin()[jj]) 
                            = tmp_mem_(index, node.columns_begin()[jj]);
                }
            }
            
            for(int ii = 0; ii < rowCount(tmp_mem_); ++ii)
            {
                if(dt
                        .predictLabel(rowVector(tmp_mem_, ii)) 
                    ==  labels_(ii, 0))
                {
                    //per class
                    ++perm_imp(index,labels_(ii, 0));
                    //total
                    ++perm_imp(index, class_count);
                }
            }
        }
        double node_status  = perm_imp(index, class_count);
        node_status /= nPerm;
        node_status -= orig_imp(0, class_count);
        node_status *= -1;
        node_status /= oob_size;
        node.status() += node_status;
        ++index;
         
        return false;
    }
};

/** Convert ClusteringTree into a list (HClustering visitor)
 */
class GetClusterVariables
{
public:
    /** NumberOfClusters x NumberOfVariables MultiArrayView containing
     * in each row the variable belonging to a cluster
     */
    MultiArrayView<2, int>    variables;
    int index;
    GetClusterVariables(MultiArrayView<2, int> vars)
        :variables(vars), index(0)
    {}
#ifdef HasHDF5
    void save(std::string file, std::string prefix)
    {
        vigra::writeHDF5(file.c_str(), (prefix + "_variables").c_str(), 
                               variables);
    }
#endif

    template<class Node>
    bool operator()(Node& node)
    {
        for(int ii = 0; ii < node.columns_size(); ++ii)
            variables(index, ii) = node.columns_begin()[ii];
        ++index;
        return false;
    }
};
/** corrects the status fields of a linkage Clustering (HClustering Visitor)
 *  
 *  such that status(currentNode) = min(status(parent), status(currentNode))
 *  \sa cluster_permutation_importance()
 */
class CorrectStatus
{
public:
    template<class Nde>
    bool operator()(Nde & cur, int level, Nde parent, bool infm)
    {
        if(parent.hasData_)
            cur.status() = std::min(parent.status(), cur.status());
        return true;
    }
};


/** draw current linkage Clustering (HClustering Visitor)
 *
 * create a graphviz .dot file
 * usage:
 * \code
 *         Matrix<double> distance = get_distance_matrix();
 *      linkage.cluster(distance);
 *      Draw<double, int> draw(features, labels, "linkagetree.graph");
 *      linkage.breadth_first_traversal(draw);
 * \endcode 
 */
template<class T1,
         class T2, 
         class C1 = UnstridedArrayTag,
         class C2 = UnstridedArrayTag> 
class Draw
{
public:
    typedef MultiArrayShape<2>::type Shp;
    MultiArrayView<2, T1, C1> const &   features_;
    MultiArrayView<2, T2, C2> const &   labels_;
    std::ofstream graphviz;


    Draw(MultiArrayView<2, T1, C1> const & features, 
         MultiArrayView<2, T2, C2> const& labels,
         std::string const  gz)
        :features_(features), labels_(labels), 
        graphviz(gz.c_str(), std::ios::out)
    {
        graphviz << "digraph G\n{\n node [shape=\"record\"]";
    }
    ~Draw()
    {
        graphviz << "\n}\n";
        graphviz.close();
    }

    template<class Nde>
    bool operator()(Nde & cur, int level, Nde parent, bool infm)
    {
        graphviz << "node" << cur.index() << " [style=\"filled\"][label = \" #Feats: "<< cur.columns_size() << "\\n";
        graphviz << " status: " << cur.status() << "\\n";
        for(int kk = 0; kk < cur.columns_size(); ++kk)
        {
                graphviz  << cur.columns_begin()[kk] << " ";
                if(kk % 15 == 14)
                    graphviz << "\\n";
        }
        graphviz << "\"] [color = \"" <<cur.status() << " 1.000 1.000\"];\n";
        if(parent.hasData_)
        graphviz << "\"node" << parent.index() << "\" -> \"node" << cur.index() <<"\";\n";
        return true;
    }
};

/** calculate Cluster based permutation importance while learning. (RandomForestVisitor)
 */
class ClusterImportanceVisitor : public visitors::VisitorBase
{
    public:

    /** List of variables as produced by GetClusterVariables
     */
    MultiArray<2, int>          variables;
    /** Corresponding importance measures
     */
    MultiArray<2, double>       cluster_importance_;
    /** Corresponding error
     */
    MultiArray<2, double>       cluster_stdev_;
    int                         repetition_count_;
    bool                        in_place_;
    HClustering            &    clustering;


#ifdef HasHDF5
    void save(std::string filename, std::string prefix)
    {
        std::string prefix1 = "cluster_importance_" + prefix;
        writeHDF5(filename.c_str(), 
                        prefix1.c_str(), 
                        cluster_importance_);
        prefix1 = "vars_" + prefix;
        writeHDF5(filename.c_str(), 
                        prefix1.c_str(), 
                        variables);
    }
#endif

    ClusterImportanceVisitor(HClustering & clst, int rep_cnt = 10) 
    :   repetition_count_(rep_cnt), clustering(clst)

    {}

    /** Allocate enough memory 
     */
    template<class RF, class PR>
    void visit_at_beginning(RF const & rf, PR const & pr)
    {
        Int32 const  class_count = rf.ext_param_.class_count_;
        Int32 const  column_count = rf.ext_param_.column_count_+1;
        cluster_importance_
            .reshape(MultiArrayShape<2>::type(2*column_count-1, 
                                                class_count+1));
        cluster_stdev_
            .reshape(MultiArrayShape<2>::type(2*column_count-1, 
                                                class_count+1));
        variables
            .reshape(MultiArrayShape<2>::type(2*column_count-1, 
                                                column_count), -1);
        GetClusterVariables gcv(variables);
        clustering.iterate(gcv);
        
    }

    /**compute permutation based var imp. 
     * (Only an Array of size oob_sample_count x 1 is created.
     *  - apposed to oob_sample_count x feature_count in the other method.
     * 
     * \sa FieldProxy
     */
    template<class RF, class PR, class SM, class ST>
    void after_tree_ip_impl(RF& rf, PR & pr,  SM & sm, ST & st, int index)
    {
        typedef MultiArrayShape<2>::type Shp_t;
        Int32                   column_count = rf.ext_param_.column_count_ +1;
        Int32                   class_count  = rf.ext_param_.class_count_;  
        
        // remove the const cast on the features (yep , I know what I am 
        // doing here.) data is not destroyed.
        typename PR::Feature_t & features 
            = const_cast<typename PR::Feature_t &>(pr.features());

        //find the oob indices of current tree. 
        ArrayVector<Int32>      oob_indices;
        ArrayVector<Int32>::iterator
                                iter;
        
        if(rf.ext_param_.actual_msample_ < pr.features().shape(0)- 10000)
        {
            ArrayVector<int> cts(2, 0);
            ArrayVector<Int32> indices(pr.features().shape(0));
            for(int ii = 0; ii < pr.features().shape(0); ++ii)
               indices.push_back(ii); 
            std::random_shuffle(indices.begin(), indices.end());
            for(int ii = 0; ii < rf.ext_param_.row_count_; ++ii)
            {
                if(!sm.is_used()[indices[ii]] && cts[pr.response()(indices[ii], 0)] < 3000)
                {
                    oob_indices.push_back(indices[ii]);
                    ++cts[pr.response()(indices[ii], 0)];
                }
            }
        }
        else
        {
            for(int ii = 0; ii < rf.ext_param_.row_count_; ++ii)
                if(!sm.is_used()[ii])
                    oob_indices.push_back(ii);
        }

        // Random foo
        RandomMT19937           random(RandomSeed);
        UniformIntRandomFunctor<RandomMT19937>  
                                randint(random);

        //make some space for the results
        MultiArray<2, double>
                    oob_right(Shp_t(1, class_count + 1)); 
        
        // get the oob success rate with the original samples
        for(iter = oob_indices.begin(); 
            iter != oob_indices.end(); 
            ++iter)
        {
            if(rf.tree(index)
                    .predictLabel(rowVector(features, *iter)) 
                ==  pr.response()(*iter, 0))
            {
                //per class
                ++oob_right[pr.response()(*iter,0)];
                //total
                ++oob_right[class_count];
            }
        }
        
        MultiArray<2, double>
                    perm_oob_right (Shp_t(2* column_count-1, class_count + 1)); 
        
        PermuteCluster<ArrayVector<Int32>::iterator,typename RF::DecisionTree_t>
            pc(oob_indices.begin(), oob_indices.end(), 
                            pr.features(),
                            pr.response(),
                            perm_oob_right,
                            oob_right,
                            repetition_count_,
                            rf.tree(index));
        clustering.iterate(pc);

        perm_oob_right  /=  repetition_count_;
        for(int ii = 0; ii < rowCount(perm_oob_right); ++ii)
            rowVector(perm_oob_right, ii) -= oob_right;

        perm_oob_right       *= -1;
        perm_oob_right       /= oob_indices.size();
        cluster_importance_  += perm_oob_right;
    }

    /** calculate permutation based impurity after every tree has been 
     * learned  default behaviour is that this happens out of place.
     * If you have very big data sets and want to avoid copying of data 
     * set the in_place_ flag to true. 
     */
    template<class RF, class PR, class SM, class ST>
    void visit_after_tree(RF& rf, PR & pr,  SM & sm, ST & st, int index)
    {    
            after_tree_ip_impl(rf, pr, sm, st, index);
    }

    /** Normalise variable importance after the number of trees is known.
     */
    template<class RF, class PR>
    void visit_at_end(RF & rf, PR & pr)
    {
        NormalizeStatus nrm(rf.tree_count());
        clustering.iterate(nrm);
        cluster_importance_ /= rf.trees_.size();
    }
};

/** Perform hierarchical clustering of variables and assess importance of clusters
 *
 * \param features    IN:     n x p matrix containing n instances with p attributes/features
 *                             used in the variable selection algorithm
 * \param response  IN:     n x 1 matrix containing the corresponding response
 * \param linkage    OUT:    Hierarchical grouping of variables.
 * \param distance  OUT:    distance matrix used for creating the linkage
 *
 * Performs Hierarchical clustering of variables. And calculates the permutation importance 
 * measures of each of the clusters. Use the Draw functor to create human readable output
 * The cluster-permutation importance measure corresponds to the normal permutation importance
 * measure with all columns corresponding to a cluster permuted. 
 * The importance measure for each cluster is stored as the status() field of each clusternode
 * \sa HClustering
 *
 * usage:
 * \code
 *         MultiArray<2, double>     features = createSomeFeatures();
 *         MultiArray<2, int>        labels   = createCorrespondingLabels();
 *         HClustering                linkage;
 *         MultiArray<2, double>    distance;
 *         cluster_permutation_importance(features, labels, linkage, distance)
 *        // create graphviz output
 *
 *      Draw<double, int> draw(features, labels, "linkagetree.graph");
 *      linkage.breadth_first_traversal(draw);
 *
 * \endcode
 *
 *
 */                    
template<class FeatureT, class ResponseT>
void cluster_permutation_importance(FeatureT              const & features,
                                         ResponseT         const &     response,
                                    HClustering               & linkage,
                                    MultiArray<2, double>      & distance)
{

        RandomForestOptions opt;
        opt.tree_count(100);
        if(features.shape(0) > 40000)
            opt.samples_per_tree(20000).use_stratification(RF_EQUAL);


        vigra::RandomForest<int> RF(opt); 
        visitors::RandomForestProgressVisitor             progress;
        visitors::CorrelationVisitor                     missc;
        RF.learn(features, response,
                 create_visitor(missc, progress));
        distance = missc.distance;
        /*
           missc.save(exp_dir + dset.name() + "_result.h5", dset.name()+"MACH");
           */


        // Produce linkage
        linkage.cluster(distance);
        
        //linkage.save(exp_dir + dset.name() + "_result.h5", "_linkage_CC/");
        vigra::RandomForest<int> RF2(opt); 
        ClusterImportanceVisitor          ci(linkage);
        RF2.learn(features, 
                  response,
                  create_visitor(progress, ci));
        
        
        CorrectStatus cs;
        linkage.breadth_first_traversal(cs);

        //ci.save(exp_dir + dset.name() + "_result.h5", dset.name());
        //Draw<double, int> draw(dset.features(), dset.response(), exp_dir+ dset.name() + ".graph");
        //linkage.breadth_first_traversal(draw);

}

    
template<class FeatureT, class ResponseT>
void cluster_permutation_importance(FeatureT              const & features,
                                         ResponseT         const &     response,
                                    HClustering               & linkage)
{
    MultiArray<2, double> distance;
    cluster_permutation_importance(features, response, linkage, distance);
}

    
template<class Array1, class Vector1>
void get_ranking(Array1 const & in, Vector1 & out)
{
    std::map<double, int> mymap;
    for(int ii = 0; ii < in.size(); ++ii)
        mymap[in[ii]] = ii;
    for(std::map<double, int>::reverse_iterator iter = mymap.rbegin(); iter!= mymap.rend(); ++iter)
    {
        out.push_back(iter->second);
    }
}
}//namespace algorithms
}//namespace rf
}//namespace vigra