/usr/include/torch/Random.h is in libtorch3-dev 3.1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | // Copyright (C) 2003--2004 Ronan Collobert (collober@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef RANDOM_INC
#define RANDOM_INC
#include "general.h"
namespace Torch {
/** Random class which contains several static random methods.
These methods are based on a uniform random generator,
named "Mersenne Twister", available at:
http://www.math.keio.ac.jp/matumoto/emt.html.
Copyright Makoto Matsumoto and Takuji Nishimura.
(Have a look inside the implementation file for details).
The random generator can be initialized with the manualSeed() method.
Otherwise, it will be automatically initialized with a seed based
on the current computer clock.
@author Ronan Collobert (collober@idiap.ch)
*/
class Random
{
public:
// The seed used to initialize the random generator.
static unsigned long the_initial_seed;
// Internal variables for the Mersenne Twister generator
static const int n;
static const int m;
static unsigned long state[]; /* the array for the state vector */
static int left;
static int initf;
static unsigned long *next;
// Internal variables for the normal distribution generator
static real normal_x;
static real normal_y;
static real normal_rho;
static bool normal_is_valid;
// Internal method for the Mersenne Twister generator
static void nextState();
/// Initializes the random number generator with the computer clock.
static void seed();
/// Initializes the random number generator with the given long "the_seed_".
static void manualSeed(unsigned long the_seed_);
/// Returns the starting seed used.
static unsigned long getInitialSeed();
/// Generates a uniform 32 bits integer.
static unsigned long random();
/// Generates a uniform random number on [0,1[.
static real uniform();
/// Returns in #indices# #n_indices# shuffled. (between 0 and #n_indices-1#).
static void getShuffledIndices(int *indices, int n_indices);
/// Shuffles tabular, which contains #n_elems# of size #size_elem#.
static void shuffle(void *tabular, int size_elem, int n_elems);
/// Generates a uniform random number on [a,b[ (b>a).
static real boundedUniform(real a, real b);
/** Generates a random number from a normal distribution.
(With mean #mean# and standard deviation #stdv >= 0#).
*/
static real normal(real mean=0, real stdv=1);
/** Generates a random number from an exponential distribution.
The density is $p(x) = lambda * exp(-lambda * x)$, where
lambda is a positive number.
*/
static real exponential(real lambda);
/** Returns a random number from a Cauchy distribution.
The Cauchy density is $p(x) = sigma/(pi*(sigma^2 + (x-median)^2))$
*/
static real cauchy(real median=0, real sigma=1);
/** Generates a random number from a log-normal distribution.
(#mean > 0# is the mean of the log-normal distribution
and #stdv# is its standard deviation).
*/
static real logNormal(real mean, real stdv);
/** Generates a random number from a geometric distribution.
It returns an integer #i#, where $p(i) = (1-p) * p^(i-1)$.
p must satisfy $0 < p < 1$.
*/
static int geometric(real p);
/// Returns true with probability $p$ and false with probability $1-p$ (p > 0).
static bool bernouilli(real p=0.5);
};
}
#endif
|