/usr/include/torch/Multinomial.h is in libtorch3-dev 3.1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | // Copyright (C) 2003--2004 Samy Bengio (bengio@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef MULTINOMIAL_INC
#define MULTINOMIAL_INC
#include "Distribution.h"
namespace Torch {
/** This class can be used to model Multinomial Distributions.
They can be trained using either EM (with EMTrainer) or gradient descent
(with GMTrainer).
@author Samy Bengio (bengio@idiap.ch)
*/
class Multinomial : public Distribution
{
public:
/// number of values this multinomial can take
int n_values;
/// the prior weight given to each value. kind of smoother
real prior_weights;
/// if true then does equal initialization of the weights
bool equal_initialization;
/// the pointers to the parameters
real* log_weights;
/// the pointers to the d_parameters
real* dlog_weights;
/// accumulators for EM
real* weights_acc;
Multinomial(int n_values_);
virtual void setDataSet(DataSet* data_);
virtual void eMIterInitialize();
virtual void iterInitialize();
virtual real frameLogProbability(int t, real *inputs);
virtual void sequenceInitialize(Sequence* inputs);
virtual void eMSequenceInitialize(Sequence* inputs);
virtual void frameEMAccPosteriors(int t, real *inputs, real log_posterior);
virtual void eMUpdate();
virtual void update();
virtual void frameBackward(int t, real *f_inputs, real *beta_, real *f_outputs, real *alpha_);
virtual void frameDecision(int t, real *decision);
virtual ~Multinomial();
};
}
#endif
|