This file is indexed.

/usr/include/superlu/slu_util.h is in libsuperlu-dev 4.3+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/** @file slu_util.h
 * \brief Utility header file 
 *
 * -- SuperLU routine (version 4.1) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November, 2010
 *
 */

#ifndef __SUPERLU_UTIL /* allow multiple inclusions */
#define __SUPERLU_UTIL

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*
#ifndef __STDC__
#include <malloc.h>
#endif
*/
#include <assert.h>
#include "superlu_enum_consts.h"

/***********************************************************************
 * Macros
 ***********************************************************************/
#define FIRSTCOL_OF_SNODE(i)	(xsup[i])
/* No of marker arrays used in the symbolic factorization,
   each of size n */
#define NO_MARKER     3
#define NUM_TEMPV(m,w,t,b)  ( SUPERLU_MAX(m, (t + b)*w) )

#ifndef USER_ABORT
#define USER_ABORT(msg) superlu_abort_and_exit(msg)
#endif

#define ABORT(err_msg) \
 { char msg[256];\
   sprintf(msg,"%s at line %d in file %s\n",err_msg,__LINE__, __FILE__);\
   USER_ABORT(msg); }


#ifndef USER_MALLOC
#if 1
#define USER_MALLOC(size) superlu_malloc(size)
#else
/* The following may check out some uninitialized data */
#define USER_MALLOC(size) memset (superlu_malloc(size), '\x0F', size)
#endif
#endif

#define SUPERLU_MALLOC(size) USER_MALLOC(size)

#ifndef USER_FREE
#define USER_FREE(addr) superlu_free(addr)
#endif

#define SUPERLU_FREE(addr) USER_FREE(addr)

#define CHECK_MALLOC(where) {                 \
    extern int superlu_malloc_total;        \
    printf("%s: malloc_total %d Bytes\n",     \
	   where, superlu_malloc_total); \
}

#define SUPERLU_MAX(x, y) 	( (x) > (y) ? (x) : (y) )
#define SUPERLU_MIN(x, y) 	( (x) < (y) ? (x) : (y) )

/*********************************************************
 * Macros used for easy access of sparse matrix entries. *
 *********************************************************/
#define L_SUB_START(col)     ( Lstore->rowind_colptr[col] )
#define L_SUB(ptr)           ( Lstore->rowind[ptr] )
#define L_NZ_START(col)      ( Lstore->nzval_colptr[col] )
#define L_FST_SUPC(superno)  ( Lstore->sup_to_col[superno] )
#define U_NZ_START(col)      ( Ustore->colptr[col] )
#define U_SUB(ptr)           ( Ustore->rowind[ptr] )


/***********************************************************************
 * Constants 
 ***********************************************************************/
#define EMPTY	(-1)
/*#define NO	(-1)*/
#define FALSE	0
#define TRUE	1

#define NO_MEMTYPE  4      /* 0: lusup;
			      1: ucol;
			      2: lsub;
			      3: usub */

#define GluIntArray(n)   (5 * (n) + 5)

/* Dropping rules */
#define  NODROP	        ( 0x0000 )
#define	 DROP_BASIC	( 0x0001 )  /* ILU(tau) */
#define  DROP_PROWS	( 0x0002 )  /* ILUTP: keep p maximum rows */
#define  DROP_COLUMN	( 0x0004 )  /* ILUTP: for j-th column, 
				              p = gamma * nnz(A(:,j)) */
#define  DROP_AREA 	( 0x0008 )  /* ILUTP: for j-th column, use
 		 			      nnz(F(:,1:j)) / nnz(A(:,1:j))
					      to limit memory growth  */
#define  DROP_SECONDARY	( 0x000E )  /* PROWS | COLUMN | AREA */
#define  DROP_DYNAMIC	( 0x0010 )  /* adaptive tau */
#define  DROP_INTERP	( 0x0100 )  /* use interpolation */


#if 1
#define MILU_ALPHA (1.0e-2) /* multiple of drop_sum to be added to diagonal */
#else
#define MILU_ALPHA  1.0 /* multiple of drop_sum to be added to diagonal */
#endif


/***********************************************************************
 * Type definitions
 ***********************************************************************/
typedef float    flops_t;
typedef unsigned char Logical;

/* 
 *-- This contains the options used to control the solution process.
 *
 * Fact   (fact_t)
 *        Specifies whether or not the factored form of the matrix
 *        A is supplied on entry, and if not, how the matrix A should
 *        be factorizaed.
 *        = DOFACT: The matrix A will be factorized from scratch, and the
 *             factors will be stored in L and U.
 *        = SamePattern: The matrix A will be factorized assuming
 *             that a factorization of a matrix with the same sparsity
 *             pattern was performed prior to this one. Therefore, this
 *             factorization will reuse column permutation vector 
 *             ScalePermstruct->perm_c and the column elimination tree
 *             LUstruct->etree.
 *        = SamePattern_SameRowPerm: The matrix A will be factorized
 *             assuming that a factorization of a matrix with the same
 *             sparsity	pattern and similar numerical values was performed
 *             prior to this one. Therefore, this factorization will reuse
 *             both row and column scaling factors R and C, both row and
 *             column permutation vectors perm_r and perm_c, and the
 *             data structure set up from the previous symbolic factorization.
 *        = FACTORED: On entry, L, U, perm_r and perm_c contain the 
 *              factored form of A. If DiagScale is not NOEQUIL, the matrix
 *              A has been equilibrated with scaling factors R and C.
 *
 * Equil  (yes_no_t)
 *        Specifies whether to equilibrate the system (scale A's row and
 *        columns to have unit norm).
 *
 * ColPerm (colperm_t)
 *        Specifies what type of column permutation to use to reduce fill.
 *        = NATURAL: use the natural ordering 
 *        = MMD_ATA: use minimum degree ordering on structure of A'*A
 *        = MMD_AT_PLUS_A: use minimum degree ordering on structure of A'+A
 *        = COLAMD: use approximate minimum degree column ordering
 *        = MY_PERMC: use the ordering specified by the user
 *         
 * Trans  (trans_t)
 *        Specifies the form of the system of equations:
 *        = NOTRANS: A * X = B        (No transpose)
 *        = TRANS:   A**T * X = B     (Transpose)
 *        = CONJ:    A**H * X = B     (Transpose)
 *
 * IterRefine (IterRefine_t)
 *        Specifies whether to perform iterative refinement.
 *        = NO: no iterative refinement
 *        = SLU_SINGLE: perform iterative refinement in single precision
 *        = SLU_DOUBLE: perform iterative refinement in double precision
 *        = SLU_EXTRA: perform iterative refinement in extra precision
 *
 * DiagPivotThresh (double, in [0.0, 1.0]) (only for sequential SuperLU)
 *        Specifies the threshold used for a diagonal entry to be an
 *        acceptable pivot.
 *
 * SymmetricMode (yest_no_t)
 *        Specifies whether to use symmetric mode. Symmetric mode gives 
 *        preference to diagonal pivots, and uses an (A'+A)-based column
 *        permutation algorithm.
 *
 * PivotGrowth (yes_no_t)
 *        Specifies whether to compute the reciprocal pivot growth.
 *
 * ConditionNumber (ues_no_t)
 *        Specifies whether to compute the reciprocal condition number.
 *
 * RowPerm (rowperm_t) (only for SuperLU_DIST or ILU)
 *        Specifies whether to permute rows of the original matrix.
 *        = NO: not to permute the rows
 *        = LargeDiag: make the diagonal large relative to the off-diagonal
 *        = MY_PERMR: use the permutation given by the user
 *
 * ILU_DropRule (int)
 *        Specifies the dropping rule:
 *	  = DROP_BASIC:   Basic dropping rule, supernodal based ILUTP(tau).
 *	  = DROP_PROWS:   Supernodal based ILUTP(p,tau), p = gamma * nnz(A)/n.
 *	  = DROP_COLUMN:  Variant of ILUTP(p,tau), for j-th column,
 *			      p = gamma * nnz(A(:,j)).
 *	  = DROP_AREA:    Variation of ILUTP, for j-th column, use
 *			      nnz(F(:,1:j)) / nnz(A(:,1:j)) to control memory.
 *	  = DROP_DYNAMIC: Modify the threshold tau during factorizaion:
 *			  If nnz(L(:,1:j)) / nnz(A(:,1:j)) > gamma
 *				  tau_L(j) := MIN(tau_0, tau_L(j-1) * 2);
 *			  Otherwise
 *				  tau_L(j) := MAX(tau_0, tau_L(j-1) / 2);
 *			  tau_U(j) uses the similar rule.
 *			  NOTE: the thresholds used by L and U are separate.
 *	  = DROP_INTERP:  Compute the second dropping threshold by
 *	                  interpolation instead of sorting (default).
 *  		          In this case, the actual fill ratio is not
 *			  guaranteed to be smaller than gamma.
 *   	  Note: DROP_PROWS, DROP_COLUMN and DROP_AREA are mutually exclusive.
 *	  ( Default: DROP_BASIC | DROP_AREA )
 *
 * ILU_DropTol (double)
 *        numerical threshold for dropping.
 *
 * ILU_FillFactor (double) 
 *        Gamma in the secondary dropping.
 *
 * ILU_Norm (norm_t)
 *        Specify which norm to use to measure the row size in a
 *        supernode: infinity-norm, 1-norm, or 2-norm.
 *
 * ILU_FillTol (double)
 *        numerical threshold for zero pivot perturbation.
 *
 * ILU_MILU (milu_t)
 *        Specifies which version of MILU to use.
 *
 * ILU_MILU_Dim (double) 
 *        Dimension of the PDE if available.
 *
 * ReplaceTinyPivot (yes_no_t) (only for SuperLU_DIST)
 *        Specifies whether to replace the tiny diagonals by
 *        sqrt(epsilon)*||A|| during LU factorization.
 *
 * SolveInitialized (yes_no_t) (only for SuperLU_DIST)
 *        Specifies whether the initialization has been performed to the
 *        triangular solve.
 *
 * RefineInitialized (yes_no_t) (only for SuperLU_DIST)
 *        Specifies whether the initialization has been performed to the
 *        sparse matrix-vector multiplication routine needed in iterative
 *        refinement.
 *
 * PrintStat (yes_no_t)
 *        Specifies whether to print the solver's statistics.
 */
typedef struct {
    fact_t        Fact;
    yes_no_t      Equil;
    colperm_t     ColPerm;
    trans_t       Trans;
    IterRefine_t  IterRefine;
    double        DiagPivotThresh;
    yes_no_t      SymmetricMode;
    yes_no_t      PivotGrowth;
    yes_no_t      ConditionNumber;
    rowperm_t     RowPerm;
    int 	  ILU_DropRule;
    double	  ILU_DropTol;    /* threshold for dropping */
    double	  ILU_FillFactor; /* gamma in the secondary dropping */
    norm_t	  ILU_Norm;       /* infinity-norm, 1-norm, or 2-norm */
    double	  ILU_FillTol;    /* threshold for zero pivot perturbation */
    milu_t	  ILU_MILU;
    double	  ILU_MILU_Dim;   /* Dimension of PDE (if available) */
    yes_no_t      ParSymbFact;
    yes_no_t      ReplaceTinyPivot; /* used in SuperLU_DIST */
    yes_no_t      SolveInitialized;
    yes_no_t      RefineInitialized;
    yes_no_t      PrintStat;
    int           nnzL, nnzU;      /* used to store nnzs for now       */
    int           num_lookaheads;  /* num of levels in look-ahead      */
    yes_no_t      lookahead_etree; /* use etree computed from the
				      serial symbolic factorization */
    yes_no_t      SymPattern;      /* symmetric factorization          */
} superlu_options_t;

/*! \brief Headers for 4 types of dynamatically managed memory */
typedef struct e_node {
    int size;      /* length of the memory that has been used */
    void *mem;     /* pointer to the new malloc'd store */
} ExpHeader;

typedef struct {
    int  size;
    int  used;
    int  top1;  /* grow upward, relative to &array[0] */
    int  top2;  /* grow downward */
    void *array;
} LU_stack_t;

typedef struct {
    int     *panel_histo; /* histogram of panel size distribution */
    double  *utime;       /* running time at various phases */
    flops_t *ops;         /* operation count at various phases */
    int     TinyPivots;   /* number of tiny pivots */
    int     RefineSteps;  /* number of iterative refinement steps */
    int     expansions;   /* number of memory expansions */
} SuperLUStat_t;

typedef struct {
    float for_lu;
    float total_needed;
} mem_usage_t;


/***********************************************************************
 * Prototypes
 ***********************************************************************/
#ifdef __cplusplus
extern "C" {
#endif

extern void    Destroy_SuperMatrix_Store(SuperMatrix *);
extern void    Destroy_CompCol_Matrix(SuperMatrix *);
extern void    Destroy_CompRow_Matrix(SuperMatrix *);
extern void    Destroy_SuperNode_Matrix(SuperMatrix *);
extern void    Destroy_CompCol_Permuted(SuperMatrix *);
extern void    Destroy_Dense_Matrix(SuperMatrix *);
extern void    get_perm_c(int, SuperMatrix *, int *);
extern void    set_default_options(superlu_options_t *options);
extern void    ilu_set_default_options(superlu_options_t *options);
extern void    sp_preorder (superlu_options_t *, SuperMatrix*, int*, int*,
			    SuperMatrix*);
extern void    superlu_abort_and_exit(char*);
extern void    *superlu_malloc (size_t);
extern int     *intMalloc (int);
extern int     *intCalloc (int);
extern void    superlu_free (void*);
extern void    SetIWork (int, int, int, int *, int **, int **, int **,
                         int **, int **, int **, int **);
extern int     sp_coletree (int *, int *, int *, int, int, int *);
extern void    relax_snode (const int, int *, const int, int *, int *);
extern void    heap_relax_snode (const int, int *, const int, int *, int *);
extern int     mark_relax(int, int *, int *, int *, int *, int *, int *);
extern void    ilu_relax_snode (const int, int *, const int, int *,
				int *, int *);
extern void    ilu_heap_relax_snode (const int, int *, const int, int *,
				     int *, int*);
extern void    resetrep_col (const int, const int *, int *);
extern int     spcoletree (int *, int *, int *, int, int, int *);
extern int     *TreePostorder (int, int *);
extern double  SuperLU_timer_ ();
extern int     sp_ienv (int);
extern int     lsame_ (char *, char *);
extern int     xerbla_ (char *, int *);
extern void    ifill (int *, int, int);
extern void    snode_profile (int, int *);
extern void    super_stats (int, int *);
extern void    check_repfnz(int, int, int, int *);
extern void    PrintSumm (char *, int, int, int);
extern void    StatInit(SuperLUStat_t *);
extern void    StatPrint (SuperLUStat_t *);
extern void    StatFree(SuperLUStat_t *);
extern void    print_panel_seg(int, int, int, int, int *, int *);
extern int     print_int_vec(char *,int, int *);
extern int     slu_PrintInt10(char *, int, int *);

#ifdef __cplusplus
  }
#endif

#endif /* __SUPERLU_UTIL */