This file is indexed.

/usr/include/stk/BiQuad.h is in libstk0-dev 4.4.4-5+deb8u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#ifndef STK_BIQUAD_H
#define STK_BIQUAD_H

#include "Filter.h"

namespace stk {

/***************************************************/
/*! \class BiQuad
    \brief STK biquad (two-pole, two-zero) filter class.

    This class implements a two-pole, two-zero digital filter.
    Methods are provided for creating a resonance or notch in the
    frequency response while maintaining a constant filter gain.

    by Perry R. Cook and Gary P. Scavone, 1995-2012.
*/
/***************************************************/

class BiQuad : public Filter
{
public:

  //! Default constructor creates a second-order pass-through filter.
  BiQuad();

  //! Class destructor.
  ~BiQuad();

  //! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
  void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };

  //! Set all filter coefficients.
  void setCoefficients( StkFloat b0, StkFloat b1, StkFloat b2, StkFloat a1, StkFloat a2, bool clearState = false );

  //! Set the b[0] coefficient value.
  void setB0( StkFloat b0 ) { b_[0] = b0; };

  //! Set the b[1] coefficient value.
  void setB1( StkFloat b1 ) { b_[1] = b1; };

  //! Set the b[2] coefficient value.
  void setB2( StkFloat b2 ) { b_[2] = b2; };

  //! Set the a[1] coefficient value.
  void setA1( StkFloat a1 ) { a_[1] = a1; };

  //! Set the a[2] coefficient value.
  void setA2( StkFloat a2 ) { a_[2] = a2; };

  //! Sets the filter coefficients for a resonance at \e frequency (in Hz).
  /*!
    This method determines the filter coefficients corresponding to
    two complex-conjugate poles with the given \e frequency (in Hz)
    and \e radius from the z-plane origin.  If \e normalize is true,
    the filter zeros are placed at z = 1, z = -1, and the coefficients
    are then normalized to produce a constant unity peak gain
    (independent of the filter \e gain parameter).  The resulting
    filter frequency response has a resonance at the given \e
    frequency.  The closer the poles are to the unit-circle (\e radius
    close to one), the narrower the resulting resonance width.
    An unstable filter will result for \e radius >= 1.0.  The
    \e frequency value should be between zero and half the sample rate.
  */
  void setResonance( StkFloat frequency, StkFloat radius, bool normalize = false );

  //! Set the filter coefficients for a notch at \e frequency (in Hz).
  /*!
    This method determines the filter coefficients corresponding to
    two complex-conjugate zeros with the given \e frequency (in Hz)
    and \e radius from the z-plane origin.  No filter normalization is
    attempted.  The \e frequency value should be between zero and half
    the sample rate.  The \e radius value should be positive.
  */
  void setNotch( StkFloat frequency, StkFloat radius );

  //! Sets the filter zeroes for equal resonance gain.
  /*!
    When using the filter as a resonator, zeroes places at z = 1, z
    = -1 will result in a constant gain at resonance of 1 / (1 - R),
    where R is the pole radius setting.

  */
  void setEqualGainZeroes( void );

  //! Return the last computed output value.
  StkFloat lastOut( void ) const { return lastFrame_[0]; };

  //! Input one sample to the filter and return a reference to one output.
  StkFloat tick( StkFloat input );

  //! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
  /*!
    The StkFrames argument reference is returned.  The \c channel
    argument must be less than the number of channels in the
    StkFrames argument (the first channel is specified by 0).
    However, range checking is only performed if _STK_DEBUG_ is
    defined during compilation, in which case an out-of-range value
    will trigger an StkError exception.
  */
  StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );

  //! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
  /*!
    The \c iFrames object reference is returned.  Each channel
    argument must be less than the number of channels in the
    corresponding StkFrames argument (the first channel is specified
    by 0).  However, range checking is only performed if _STK_DEBUG_
    is defined during compilation, in which case an out-of-range value
    will trigger an StkError exception.
  */
  StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );

 protected:

  virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
};

inline StkFloat BiQuad :: tick( StkFloat input )
{
  inputs_[0] = gain_ * input;
  lastFrame_[0] = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
  lastFrame_[0] -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
  inputs_[2] = inputs_[1];
  inputs_[1] = inputs_[0];
  outputs_[2] = outputs_[1];
  outputs_[1] = lastFrame_[0];

  return lastFrame_[0];
}

inline StkFrames& BiQuad :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
  if ( channel >= frames.channels() ) {
    oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
    handleError( StkError::FUNCTION_ARGUMENT );
  }
#endif

  StkFloat *samples = &frames[channel];
  unsigned int hop = frames.channels();
  for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
    inputs_[0] = gain_ * *samples;
    *samples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
    *samples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
    inputs_[2] = inputs_[1];
    inputs_[1] = inputs_[0];
    outputs_[2] = outputs_[1];
    outputs_[1] = *samples;
  }

  lastFrame_[0] = outputs_[1];
  return frames;
}

inline StkFrames& BiQuad :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
  if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
    oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
    handleError( StkError::FUNCTION_ARGUMENT );
  }
#endif

  StkFloat *iSamples = &iFrames[iChannel];
  StkFloat *oSamples = &oFrames[oChannel];
  unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
  for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
    inputs_[0] = gain_ * *iSamples;
    *oSamples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
    *oSamples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
    inputs_[2] = inputs_[1];
    inputs_[1] = inputs_[0];
    outputs_[2] = outputs_[1];
    outputs_[1] = *oSamples;
  }

  lastFrame_[0] = outputs_[1];
  return iFrames;
}

} // stk namespace

#endif